Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(28): e202305923, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37156728

RESUMO

Certain metal complexes are known as high-performance CO2 reduction photocatalysts driven by visible light. However, most of them rely on rare, precious metals as principal components, and integrating the functions of light absorption and catalysis into a single molecular unit based on abundant metals remains a challenge. Metal-organic frameworks (MOFs), which can be regarded as intermediate compounds between molecules and inorganic solids, are potential platforms for the construction of a simple photocatalytic system composed only of Earth-abundant nontoxic elements. In this work, we report that a tin-based MOF enables the conversion of CO2 into formic acid with a record high apparent quantum yield (9.8 % at 400 nm) and >99 % selectivity without the need for any additional photosensitizer or catalyst. This work highlights a new MOF with strong potential for photocatalytic CO2 reduction driven by solar energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA