Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(48): e202210422, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36220783

RESUMO

Organic molecules which can undergo excited-state intramolecular proton transfer (ESIPT) process have been considered as ideal gain materials for near-infrared organic lasers owing to their effective four-level systems. However, extending lasing wavelength beyond 800 nm with present ESIPT-active gain materials is still in challenge. Herein, we established a molecular design strategy that operates via extending the π-conjugated system of the ESIPT parent core to enhance the cascaded double ESIPT process and thus to achieve the red-shifted six-level system lasing. Concretely, a model molecule with 1,9-dihydroxyanthracene as the ESIPT parent core was designed and synthesized, which was proved to undergo twice cascaded ESIPT processes while the 1,8-dihydroxynaphthalene-based analogue can only undergo once ESIPT process based on DFT calculations and ultrafast dynamics analyses. Finally, a six-level system lasing toward 900 nm was achieved with a low threshold of 27.4 µJ cm-2 .

2.
Angew Chem Int Ed Engl ; 60(16): 9114-9119, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33538056

RESUMO

Near-infrared (NIR) organic solid-state lasers play an essential role in applications ranging from laser communication to infrared night vision, but progress in this area is restricted by the lack of effective excited-state gain processes. Herein, we originally proposed and demonstrated the cascaded occurrence of excited-state intramolecular proton transfer for constructing the completely new energy-level systems. Cascading by the first ultrafast proton transfer of <430 fs and the subsequent irreversible second proton transfer of ca. 1.6 ps, the stepwise proton transfer process favors the true six-level photophysical cycle, which supports efficient population inversion and thus NIR single-mode lasing at 854 nm. This work realizes longest wavelength beyond 850 nm of organic single-crystal lasing to date and originally exploits the cascaded excited-state molecular proton transfer energy-level systems for organic solid-state lasers.

3.
Adv Sci (Weinh) ; 9(16): e2200525, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344285

RESUMO

Thermally activated delayed fluorescent (TADF) materials have attracted increasing attention because of their ability to harvest triplet excitons via a reverse intersystem crossing process. TADF gain materials that can recycle triplet excitons for stimulated emission are considered for solving the triplet accumulation problem in electrically pumped organic solid-state lasers (OSSLs). In this mini review, recent progress in TADF gain materials is summarized, and design principles are extracted from existing reports. The construction methods of resonators based on TADF gain materials are also introduced, and the challenges and perspectives for the future development of TADF gain materials are presented. It is hoped that this review will aid the advances in TADF gain materials and thus promote the development of electrically pumped OSSLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA