Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630576

RESUMO

Ischemic stroke (IS) is a common neurological disorder associated with high disability rates and mortality rates. At present, recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-approved drug for IS. However, due to the narrow therapeutic window and risk of intracerebral hemorrhage, r-tPA is currently used in less than 5% of stroke patients. Natural compounds have been widely used in the treatment of IS in China and have a wide range of therapeutic effects on IS by regulating multiple targets and signaling pathways. The keywords "ischemia stroke, traditional Chinese Medicine, Chinese herbal medicine, natural compounds" were used to search the relevant literature in PubMed and other databases over the past five years. The results showed that JAK/STAT, NF-κB, MAPK, Notch, Nrf2, and PI3K/Akt are the key pathways, and SIRT1, MMP9, TLR4, HIF-α are the key targets for the natural compounds from traditional Chinese medicine in treating IS. This study aims to update and summarize the signaling pathways and targets of natural compounds in the treatment of IS, and provide a base of information for the future development of effective treatments for IS.


Assuntos
AVC Isquêmico , Medicina Tradicional Chinesa , Transdução de Sinais , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
2.
Mass Spectrom Rev ; 38(4-5): 380-402, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30817039

RESUMO

Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Desenvolvimento de Medicamentos/métodos , Medicina Herbária/métodos , Humanos , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Plantas Medicinais/química
3.
Biomed Chromatogr ; 34(2): e4724, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31755117

RESUMO

Lipid metabolism has a significant function in the central nervous system and Alzheimer's disease (AD) is an age-related senile disease characterized by central nerve degeneration. The pathological development of AD is closely related to lipid metabolism disorders. To reveal the influence of Kai-Xin-San (KXS) on lipid metabolism in APP/PSI transgenic mice and potential therapeutic targets for treating AD, brain tissue samples were collected and analyzed by high-throughput lipidomics based on UPLC-Q/TOF-MS. The collected raw data were processed by multivariate data analysis to discover the potential biomarkers and lipid metabolic profiles. Compared with the control wild-type mouse group, nine potential lipid biomarkers were found in the AD model group, of which seven were up-regulated and two were down-regulated. Orally administrated KXS can reverse the changes in these potential biomarkers. Compared with the model group, a total of six differential metabolites showed a recovery trend and may be potential targets for KXS to treat AD. This study showed that high-throughput lipidomics can be used to discover the perturbed pathways and lipid biomarkers as potential targets to reveal the therapeutic effects of KXS.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Lipidômica/métodos , Lipídeos/análise , Animais , Biomarcadores/análise , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
J Sep Sci ; 40(3): 663-670, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874254

RESUMO

Radix Polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. It is an important medicinal plant that has been used as a sedative and to improve memory for a number of years in most of Asia. However, the in vivo constituents of the multiple constituents from Radix Polygalae remain unknown. In the current study, ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and the MarkerLynxTM software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. A rapid and efficient method for the characterization of multiple constituents in the herbal medicine Radix Polygalae by ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry is described. In total, 35 compounds in the Radix Polygalae and 13 compounds absorbed into blood were characterized. Of the 35 compounds in vitro, ten were reported for first time. In the 13 compounds in vivo, six were prototype components and seven were metabolites were also elucidated for first time. This work narrowed the range of screening the potentially bioactive components and provided a basis for the quality control and mechanism of action.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Polygala/química , Espectrometria de Massas em Tandem , Espectrometria de Massas , Raízes de Plantas/química
5.
Zhongguo Zhong Yao Za Zhi ; 40(4): 569-76, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-26137671

RESUMO

Syndrome and formulae (or prescription) are two key issues in traditional Chinese medicine (TCM) and the premise research for material basis of TCM. However, vagueness of syndromes and complexity of formulae greatly limited the evaluation to syndromes and effective substance basis of prescription. Therefore, how to solve the evaluation of syndromes, confirming the efficacy material basis in prescription are the current hot issues of international concern. To solve these problems, establishing chinmedomics by integrated serum pharmacochemistry of TCM with metabolomics technology, that is a unique method of TCM research, made outstanding contributions in solving international concerns such as the effectiveness and security aspects of TCM. On the basis of the biological characterization of syndrome, the metabolic profiling of animal models of TCM syndrome, and related metabolic fingerprints as well as metabolic biomarkers were established to evaluate the overall effects of TCM formulae and corresponding relationship of syndrome-formulae. The active constituents were screened using the plotting of correlation between (endogenous) marker metabolites and (exogenous) serum constituents (PCMS), and is ongoing verification by further biological experiments. Correlation analysis between the ingredients in the body after oral formulae and endogenous markers in vivo can be used to clarify the active ingredients and synergistic properties. This method was successfully applied for rapid discovery of potentially bioactive components and metabolites from TCM, and through a series of studies on the chinmedomics, it proved that the established method could help to explore the effective substance for further research of TCM. As a new research approach, Chinmedomics is the best method to fit the holistic concept of TCM, and it can not only interpret the essence of syndrome but also elucidate the scientific connotation of Chinese medical formulae.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Animais , Diagnóstico Diferencial , Prescrições de Medicamentos , Tratamento Farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Humanos
6.
Zhongguo Zhong Yao Za Zhi ; 40(17): 3406-12, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26978981

RESUMO

Serum pharmacochemistry of traditional Chinese medicine (TCM) is designed to screen the efficacy material base of TCMs from the constituents absorbed into the blood after oral administration. The theory and method is in accordance with the effect characteristics of TCMs, and reflects the interaction between the body and the drugs, has become an effective pathway for researching the efficacy material base of TCMs which has been recognized and used widely. In the paper, the previous research contents and methods of the serum pharmacochemistry of TCM were reviewed, and on the basis of the further validity of the special administration form of the TCM formula and the corresponding property to TCM syndrome, the new strategy of serum pharmacochemistry of TCM integrating the metabonomics technologies was put forward. According to the strategy, we take the biological characters of TCM syndrome as a research starting point, taking TCM formula as object, using the metabolic biomarkers of syndromes or disease to evaluate the therapeutic effect of formula and screen the compounds of TCMs in serum which are highly correlated with the metabolic biomarkers through the correlation analysis, and by further biological validation to finally confirm the efficacy material basis of TCMs. Integrating with the systems biology technologies, the theory and method of serum pharmacochemistry of TCM will further develop, and open a new chapter in the interpretation of the theory of TCM.


Assuntos
Medicamentos de Ervas Chinesas/química , Soro/química , Animais , Tratamento Farmacológico/tendências , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Metabolômica
7.
Biomed Chromatogr ; 28(12): 1774-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24853889

RESUMO

Wen-Xin-Formula (WXF), a famous traditional prescription, has been widely used to treat myocardial ischemia syndrome for thousands of years. However, the constituents absorbed into blood after oral administration of WXF remain unknown. Here, an integrative ultra performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS) combined with the MetaboLynx approach was established to investigate the absorbed constituents in rats after oral administration of WXF. A hyphenated electrospray ionization and quadrupole-time-of-flight analyzer was used for the determination of accurate mass of the molecule and fragment ions. With this rapid and automated analysis method, a total of 32 peaks were tentatively characterized in vivo based on MS and MS/MS data and comparison with available databasess, 26 of which were parent components and six metabolites. These components mainly were ginsenosides, paeoniflorin, galloyl glucose, berberis alkaloids, phenolic, phenolic glycosides and unsaturated fatty acids, glucuronide products of original berberis alkaloids. The present study demonstrates that integrative UPLC-ESI-Q-TOF-MS technique and MetaboLynx data processing method were successfully applied for the rapid discovery of potentially bioactive components and metabolites from WXF, and proved that the established method could help to explore the effective substances for further research into WXF.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Metaboloma , Compostos Orgânicos/sangue , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Ratos , Ratos Wistar
8.
Anal Chem ; 85(15): 7606-12, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23845028

RESUMO

Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.


Assuntos
Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Reconhecimento Automatizado de Padrão , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Humanos , Análise Multivariada , Urinálise
9.
J Sep Sci ; 36(21-22): 3511-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24039112

RESUMO

Liuwei Dihuang Wan (LDW), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition, and memory. It has attracted increasing attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive, and reliable ultra-performance LC with ESI quadrupole TOF high-definition MS method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLC™ HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on ultra-performance LC with ESI quadrupole TOF high-definition MS has been successfully developed for globally identifying multiple constituents of traditional Chinese medicine prescriptions. This is the first report on the systematic analysis of the chemical constituents of LDW.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Fatores de Tempo
10.
J Sep Sci ; 36(19): 3191-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913749

RESUMO

Shuanghuanglian formula (SF) is a combination of Flos lonicerae japonicae, Radix scutellariae, and Fructus forsythiae, commonly used to treat viral or bacterial infections. However, the constituents absorbed into the blood after oral administration of SF are difficult to determine and thus remain unclear. Here, we report the application of an accurate background subtraction and multiple data processing approach (Bs-Mpa) for the comprehensive detection of compounds of SF in vivo. A sensitive and reliable ultra-performance LC coupled with ESI quadrupole TOF MS (UPLC-ESI-Q-TOF-MS) approach coupled with Bs-Mpa, which is implemented in the Strip tool from UPLC to remove nonrelated ion signals from accurate mass LC-MS data, was established to characterize the chemical constituents and rat metabolites of SF. In the loading plot of the principal component analysis, 68 ions of interest were extracted from blood samples, among them, 39 absorbed prototype components of SF and 29 metabolites were identified in vivo. It is concluded that the integrative Bs-Mpa method can be successfully applied for the rapid discovery of multiple components from a traditional Chinese medicine. The above challenge was addressed by using the proposed Bs-Mpa method and it was particularly suitable for applying to the global characterization of the constituents or metabolites in rat blood after oral administration of other well-known formulae.


Assuntos
Medicamentos de Ervas Chinesas/análise , Animais , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Biomed Chromatogr ; 27(12): 1657-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23852935

RESUMO

This study aimed to investigate the in vivo behaviors of the main components in traditional Chinese medicine (TCM) fomulae. The plasma pharmacokinetics, tissue distribution and excretion of the main component-schisandrin in rats after oral administration of a classical TCM prescription, shengmaisan (SMS), were studied by a developed and validated UPLC-MS/MS method. The separation of schisandrin was achieved on a UPLC HSS T3 column with a mobile phase consisting of acetonitrile and water at a flow rate of 0.5 mL/min by linear gradient elution. The MS/MS detection was carried out by monitoring the fragmentation of m/z 415.22 → 384.26 for schisandrin on a triple quadrupole mass spectrometer. The result showed that the method was suitable for the quantification of schisandrin in plasma, tissue and excreta samples with satisfactory selectivity, precision, accuracy, sensitivity, linearity and recovery. Pharmacokinetic results showed a rapid absorption phase with the mean Tmax of 0.17 h and a relatively slow elimination proceeding with a half-life (T1/2 ) of 5.24 ± 1.28 h. The tissue distribution showed the maximum concentration distributions of schisandrin after oral administration of SMS were in the order of small intestine > large intestine > lung > liver > kidney > spleen > heart > brain. Only 0.005-0.006% of schisandrin was recovered in feces and was not detected in urine.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ciclo-Octanos/análise , Ciclo-Octanos/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Lignanas/análise , Lignanas/farmacocinética , Compostos Policíclicos/análise , Compostos Policíclicos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Fezes/química , Masculino , Especificidade de Órgãos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Zhongguo Zhong Yao Za Zhi ; 38(21): 3786-9, 2013 Nov.
Artigo em Zh | MEDLINE | ID: mdl-24494574

RESUMO

Traditional Chinese medicine (TCM) prescription is a valuable asset for clinical medication, has multi-component and multi-target characteristics. However, due to the complex ingredients of prescription, the unclear mechanism, the lack of scientific data to support the dose-response relationship, it has become the bottleneck for the in-depth study for the process of modernization and internationalization of TCM. It requires the integration of Chinese medicine theory, modern analysis and data mining technology to build new research model for characteristic of TCM prescription. This paper provides an overview of TCM serum pharmacochemistry, pharmacokinetics (pharmacodynamics) and systems biology theory and practice, to establish the integrated three-dimensional "serum pharmacochemistry-pharmacokinetics (pharmacodynamics)-systems biology" for the research of TCM prescription to reveal the pharma-material basis and action mechanism and the compatibility scientific connotation, with a prescription Yinchenhao Tang as a case study.


Assuntos
Prescrições de Medicamentos/normas , Medicamentos de Ervas Chinesas/farmacocinética , Soro/química , Animais , Medicamentos de Ervas Chinesas/normas , Humanos , Controle de Qualidade , Biologia de Sistemas
13.
Front Endocrinol (Lausanne) ; 13: 858012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399942

RESUMO

Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Arginina , Biomarcadores/metabolismo , Creatina/metabolismo , Retinopatia Diabética/metabolismo , Humanos , Redes e Vias Metabólicas , Metabolômica/métodos
14.
J Ethnopharmacol ; 298: 115576, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963421

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wenxin Formula (WXF) is a well-known prescription with a significant curative effect in the treatment of cardiac disease. However, the lack of quality control standards caused by unclear quality control components limits the development of new drugs. AIM OF THE STUDY: The aims of this research were to discover the effective materials and screen the quality markers of WXF through a chinmedomics strategy to aid in efficacy evaluation. MATERIAL AND METHODS: The therapeutic effect of WXF against myocardial ischaemia (MI) was evaluated by serum metabolic profiling combined with routine electrocardiography; analyses of the serum biochemical indices CK, CK-MB and α-HBDH; and histopathological tests involving TTC staining and HE staining. The raw data of serum samples were obtained by UPLC-HDMS, and multivariate statistical analysis was performed with Progenesis QI software. PCMS software was used to sift the quality markers of WXF. RESULTS: A total of 25 metabolites were characterized as biomarkers for myocardial ischaemia, and Wenxin Formula reversed the levels of 23 of them that were involved in arachidonic acid metabolism, glycerophospholipid metabolism, lysine degradation, and tyrosine metabolism. Eight constituents absorbed into blood were considered to form the effective material basis of Wenxin Formula for treating myocardial ischaemia, and the Q-markers selected through PCMS were ginsenoside Rb1, cinnamic acid, paeoniflorin and berberine. CONCLUSIONS: WXF significantly ameliorated the clinical symptoms, pathological changes and metabolic abnormalities of myocardial ischaemia. This study shows that chinmedomics is a powerful strategy to filter Q-markers from effective constituents to rationally evaluate the efficacy and safety of TCMs.


Assuntos
Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Biomarcadores , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Metabolômica , Isquemia Miocárdica/tratamento farmacológico , Controle de Qualidade
15.
Front Pharmacol ; 13: 857361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450037

RESUMO

Background: Damp-heat jaundice syndrome (DHJS) is a diagnostic model of traditional Chinese medicine (TCM) that refers to jaundice caused by damp-heat pathogen invasion. DHJS is the most common clinical manifestation of TCM, with yellow skin, yellow eyes and anorexia. ZhiziBaipi Decoction (ZBD) is a classic TCM formula that is effective at treating DHJS and various liver diseases. However, the effective components of ZBD in the context of DHJS and the underlying mechanism are unclear. Purpose: This study of ZBD using the DHJS rat model aimed to elucidate the pathobiology of DHJS and the metabolic targets of therapeutic ZBD, construct the network relationship between the components of ZBD and endogenous biomarkers, and clarify the underlying mechanism of ZBD in preventing and treating DHJS. Methods: Using chinmedomics as the core strategy, an animal model was generated, and the therapeutic effect of ZBD was evaluated based on behavioral, histopathological and biochemical indicators. Metabonomics tools were used to identify biomarkers of DHJS, TCM-based serum pharmacochemistry was used to analyze the effective constituents of ZBD, and chinmedomics technology was used to identify ZBD components highly related to DHJS biomarkers. Results: A total of 42 biomarkers were preliminarily identified, and ZBD significantly affected the levels of 29 of these biomarkers. A total of 59 compounds in ZBD were characterized in vivo. According to chinmedomics analysis, the highly correlated components found in blood were isoformononetin, 3-O-feruloylquinic acid, glycyrrhizic acid, oxyberberine, obaculactone and five metabolites. Conclusions: Chinmedomics combined with UPLC-MS/MS was used to study the targets and effective constituents of ZBD for the treatment of DHJS.

16.
RSC Adv ; 10(5): 2677-2690, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496090

RESUMO

Metabolomics has been used as a promising strategy to evaluate the efficacy of and potential targets for natural products. Alcoholic liver disease (ALD) as a result of chronic ethanol consumption has high morbidity and mortality. Geniposide possesses a hepatoprotective activity against ALD, but its mechanism of action is still not clear. In this study, serum metabolomics based on ultra-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UPLC-Q/TOF-MS) combined with ingenuity pathway analysis was used to explore the therapeutic mechanisms of geniposide. We found that the levels of AST, ALT, MDA, TG, and γ-GT in the geniposide-treated group were significantly decreased, and the level of GSH was significantly increased, compared with the model group. Meanwhile, geniposide effectively inhibits apoptosis and caspase-3 activity in liver tissue. A total of 33 metabolites were identified and related with the model group to illuminate the pathogenesis of ALD, 21 of which are regulated by geniposide, involving the relevant metabolic pathways, such as amino acid metabolism, arachidonic acid metabolism, pyruvate metabolism, TCA cycle, etc. Furthermore, a significant change in amino acid metabolism suggested that it might be a promising mechanism-related target for geniposide against ALD. It also showed that a metabolomic strategy using UPLC-Q/TOF-MS combined with ingenuity pathway analysis is a potentially powerful tool for providing a comprehensive understanding of the therapeutic mechanisms of natural products, but it also offers a theoretical basis for the prevention or treatment of disease.

17.
Phytomedicine ; 74: 152928, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31451286

RESUMO

BACKGROUND: Quality control of traditional Chinese medicine (TCM) has always been a hot issue to TCM. However, due to the complexity of TCM ingredients, the current quality standards of TCM have problems that are difficult to guarantee clinical efficacy. American ginseng, the dried roots of Pawajc quinquefolium L. (Araliaceae), is a valuable herbal medicine due to various pharmacological effects and huge health benefit, which are associated with numerous active ingredients such as ginsenosides. Although a large number of studies have investigated the active ingredients of American ginseng, Q-markers reflecting comprehensive review on its efficacies has yet been unrevealed. PURPOSE: The study aims to discover the Q-markers of Panax quinquefolius (American ginseng), provides a powerful method to clarify the significant ingredents of TCM and help further discovering extensive quality evaluation model,contributing to a significant improvement of TCM quality standard. METHODS: Mice general status, biochemical indexes assay, urine metabolic profile, and serum metabolic profile were utilized for model replication and efficacy evaluation. The in vitro and in vivo constituents of American ginseng using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS) with Serum Pharmacochemistry of TCM were in-depth investigated. Q-markers that were associated with core markers of therapeutic effects were excavated by a plotting of correlation between marker metabolites and serum constituents (PCMS) approach. RESULTS: Correlation analysis of 41 blood and urine labeled metabolites with 14 serum components showed that 24-methyl-7-cholesten-3ß-ol, zizybeoside II, betulin, ginsenoside Rd, cinnamyl alcohol, pseudoginsenoside F11 is highly correlated with the therapeutic effects of Compound Zaofan Pill (CZP), while pseudoginsenoside F11 and ginsenoside Rd are highly correlated with the therapeutic effects of American ginseng. The six absorbed blood compounds can be considered as potential Q-markers for compound, of which two compounds, such as pseudoginsenoside F11 and ginsenoside Rd, can be considered as potential Q-markers for American ginseng. CONCLUSION: The study has demonstrated that the Chinmedomics is an effective, comprehensive and fire-new method for discovering the Q-markers of TCM, and it may be more reasonable choices to establish quality standards of TCM.


Assuntos
Biomarcadores Farmacológicos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Panax/química , Animais , Biomarcadores Farmacológicos/sangue , Biomarcadores Farmacológicos/urina , Sangue/efeitos dos fármacos , Sangue/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Ginsenosídeos/análise , Espectrometria de Massas , Medicina Tradicional Chinesa/normas , Camundongos , Raízes de Plantas/química , Plantas Medicinais/química , Controle de Qualidade , Urinálise
18.
Phytomedicine ; 67: 153165, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31954259

RESUMO

BACKGROUND: Quality control of traditional Chinese medicine (TCM) is the basis of clinical efficacy. Due to the complexity of TCM, it is difficult to unify the quality control, and hinders the further implementation of the quality standardization of TCM. As a new concept, quality-marker (Q-marker) plays a powerful role in promoting the standardization of quality control system of TCM. HYPOTHESIS/PURPOSE: The present review aims to provide reference and scientific basis for further development of Q-marker and assist standardization of quality control of TCM. METHODS: Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were used to search scientific contributions. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more relevant information about Q-marker. RESULTS: Q-markers play vital role in promoting the standardization of quality control of TCM. The factors that affect the quality of TCM, the advantages and disadvantages of the analytical techniques commonly used in Q-marker research were reviewed, as well as the systematic research strategies, which were verified by practices. CONCLUSION: The proposal of Q-marker not only provided a new perspective to break through the bottleneck of current quality control, but also can be used in the evaluation of pharmacological efficiency, therapeutic discovery, toxicology, etc. In addition, the Q-marker analysis strategies summarized in this paper is helpful to standardize the quality control of TCM and promote the internationalization of TCM.


Assuntos
Biomarcadores/análise , Técnicas de Química Analítica/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa/normas , Controle de Qualidade , Reprodutibilidade dos Testes
19.
RSC Adv ; 9(6): 3072-3080, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518968

RESUMO

Colorectal cancer (CRC) is one of the most malignant cancers resulting from abnormal metabolism alterations. As one of the essential amino acids, tryptophan has a variety of physiological functions, closely related to regulation of immune system, central nervous system, gastrointestinal nervous system and intestinal microflora. Colorectal cancer, a type of high-grade malignancy disease, stems from a variety of factors and often accompanies inflammatory reactions, dysbacteriosis, and metabolic disorders. Colorectal cancer accompanies inflammation and imbalance of intestinal microbiota and affects tryptophan metabolism. It is known that metabolites, rate-limiting enzymes, and ARH in tryptophan metabolism are associated with the development of CRC. Specifically, IDO1 may be a potential therapeutic target in colorectal cancer treatment. Furthermore, the reduction of tryptophan amount is proportional to the poor quality of life for colorectal cancer patients. This paper aims to discuss the role of tryptophan metabolism in a normal organism and investigate the relationship between this amino acid and colorectal cancer. This study is expected to provide theoretical support for research related to targeted therapy for colorectal cancer. Furthermore, strategies that modify tryptophan metabolism, effectively inhibiting tumor progression, may be more effective for CRC treatment.

20.
RSC Adv ; 9(55): 32141-32153, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530762

RESUMO

Essential hypertension (EH) is a chronic disease characterized by a variety of causes of elevated systemic arterial pressure, which often causes functional or organic damage to important organs such as the heart, brain, and kidney. Hypertension of excessive liver-fire syndrome is a type of classification for young people with essential hypertension. The disease is slower in its onset and its symptoms are more ambiguous, and thus its pathogenesis is complicated and still unclear. In this study, aconite, dried ginger and cinnamon extracts were combined with l-NAME to establish a model of excessive liver-fire hypertension. Blood pressure (systolic blood pressure), ANGII, NE and 5-HT were used as evaluation indicators to establish the model. Urinary metabolomics based on ultra-high performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was used to characterize the metabolic changes and potential biomarkers in modeled rats. Compared to the treatment group, 32 potential biomarkers were initially identified in the model using multivariate statistical analysis involving 11 metabolic pathways. After oral administration of Luozhen capsules, eight biomarkers that can be adjusted in high, medium and low doses of Luozhen capsules in urine were preliminarily determined, mainly involving two metabolic pathways of amino acid metabolism and lipid metabolism. In conclusion, this study explored the metabolomic changes in rats with hypertension of liver-fire hyperactivity syndrome and the post-dose metabolomics, determined the relevant biomarker groups, and clarified the metabonomic connotation of Luozhen capsules in the treatment of liver-fire excessive type hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA