Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.005
Filtrar
1.
Immunity ; 51(5): 930-948.e6, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31604687

RESUMO

Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.


Assuntos
Diferenciação Celular/genética , Linfopoese/genética , Organogênese/genética , Células Precursoras de Linfócitos T/citologia , Células Precursoras de Linfócitos T/metabolismo , Timo/embriologia , Biomarcadores , Diferenciação Celular/imunologia , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Linfopoese/imunologia , Detecção de Sinal Psicológico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 120(6): e2219630120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716379

RESUMO

Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation. CS enhanced mitochondrial elongation and oxidative phosphorylation (OXPHOS), as well as adenosine triphosphate production. Metabolomic study and Ultra-high performance liquid chromatography-mass spectrometry assay revealed that CS significantly decreased the content of long-chain fatty acids (LCFAs) and markedly induced long-chain fatty acyl-CoA synthetase 1 (Acsl1), which in turn facilitated the catabolism of LCFAs in mitochondria via fatty acid ß-oxidation and OXPHOS. In a rat carotid artery injury model, transplantation of EPCs overexpressing Acsl1 enhanced the adhesion and re-endothelialization of EPCs in vivo. MRI and vascular morphology staining showed that Acsl1 overexpression in EPCs improved vascular repair and inhibited vascular stenosis. This study reveals a mechanotransduction mechanism by which physiological CS enhances endothelial repair via EPC patency.


Assuntos
Células Progenitoras Endoteliais , Ratos , Animais , Mecanotransdução Celular , Diferenciação Celular , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo
3.
Cell Mol Life Sci ; 81(1): 138, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478029

RESUMO

Circular RNAs (circRNAs) have garnered significant attention in the field of neurodegenerative diseases including Alzheimer's diseases due to their covalently closed loop structure. However, the involvement of circRNAs in postoperative cognitive dysfunction (POCD) is still largely unexplored. To identify the genes differentially expressed between non-POCD (NPOCD) and POCD mice, we conducted the whole transcriptome sequencing initially in this study. According to the expression profiles, we observed that circAKT3 was associated with hippocampal neuronal apoptosis in POCD mice. Moreover, we found that circAKT3 overexpression reduced apoptosis of hippocampal neurons and alleviated POCD. Subsequently, through bioinformatics analysis, our data showed that circAKT3 overexpression in vitro and in vivo elevated the abundance of miR-106a-5p significantly, resulting in a decrease of HDAC4 protein and an increase of MEF2C protein. Additionally, this effect of circAKT3 was blocked by miR-106a-5p inhibitor. Interestingly, MEF2C could activate the transcription of miR-106a-5p promoter and form a positive feedback loop. Therefore, our findings revealed more potential modulation ways between circRNA-miRNA and miRNA-mRNA, providing different directions and targets for preclinical studies of POCD.


Assuntos
MicroRNAs , Complicações Cognitivas Pós-Operatórias , Animais , Camundongos , Complicações Cognitivas Pós-Operatórias/genética , RNA Circular/genética , Retroalimentação , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(27): e2123469119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771939

RESUMO

Biofilm formation is an important and ubiquitous mode of growth among bacteria. Central to the evolutionary advantage of biofilm formation is cell-cell and cell-surface adhesion achieved by a variety of factors, some of which are diffusible compounds that may operate as classical public goods-factors that are costly to produce but may benefit other cells. An outstanding question is how diffusible matrix production, in general, can be stable over evolutionary timescales. In this work, using Vibrio cholerae as a model, we show that shared diffusible biofilm matrix proteins are indeed susceptible to cheater exploitation and that the evolutionary stability of producing these matrix components fundamentally depends on biofilm spatial structure, intrinsic sharing mechanisms of these components, and flow conditions in the environment. We further show that exploitation of diffusible adhesion proteins is localized within a well-defined spatial range around cell clusters that produce them. Based on this exploitation range and the spatial distribution of cell clusters, we constructed a model of costly diffusible matrix production and related these length scales to the relatedness coefficient in social evolution theory. Our results show that production of diffusible biofilm matrix components is evolutionarily stable under conditions consistent with natural biofilm habitats and host environments. We expect the mechanisms revealed in this study to be relevant to other secreted factors that operate as cooperative public goods in bacterial communities and the concept of exploitation range and the associated analysis tools to be generally applicable.


Assuntos
Bactérias , Matriz Extracelular de Substâncias Poliméricas , Evolução Social , Bactérias/crescimento & desenvolvimento , Modelos Biológicos , Vibrio cholerae
5.
BMC Bioinformatics ; 25(1): 259, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112940

RESUMO

BACKGROUND: Effective identification of differentially expressed genes (DEGs) has been challenging for single-cell RNA sequencing (scRNA-seq) profiles. Many existing algorithms have high false positive rates (FPRs) and often fail to identify weak biological signals. RESULTS: We present a novel method for identifying DEGs in scRNA-seq data called RankCompV3. It is based on the comparison of relative expression orderings (REOs) of gene pairs which are determined by comparing the expression levels of a pair of genes in a set of single-cell profiles. The numbers of genes with consistently higher or lower expression levels than the gene of interest are counted in two groups in comparison, respectively, and the result is tabulated in a 3 × 3 contingency table which is tested by McCullagh's method to determine if the gene is dysregulated. In both simulated and real scRNA-seq data, RankCompV3 tightly controlled the FPR and demonstrated high accuracy, outperforming 11 other common single-cell DEG detection algorithms. Analysis with either regular single-cell or synthetic pseudo-bulk profiles produced highly concordant DEGs with the ground-truth. In addition, RankCompV3 demonstrates higher sensitivity to weak biological signals than other methods. The algorithm was implemented using Julia and can be called in R. The source code is available at https://github.com/pathint/RankCompV3.jl . CONCLUSIONS: The REOs-based algorithm is a valuable tool for analyzing single-cell RNA profiles and identifying DEGs with high accuracy and sensitivity.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Análise de Célula Única , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Humanos , Software
6.
Dev Biol ; 493: 103-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423673

RESUMO

Drosophila ovary has been one of the most mature and excellent systems for studying the in vivo regulatory mechanisms of stem cell fate determination. It has been well-known that the bone morphogenetic protein (BMP) signaling released by the niche cells promotes the maintenance of germline stem cells (GSCs) through inhibiting the transcription of the bag-of-marbles (bam) gene, which encodes a key factor for GSC differentiation. However, whether Bam is regulated at the post-translational level remains largely unknown. Here we show that the E3 ligase Cullin-2 (Cul2) is involved in modulating Bam ubiquitination, which occurs probably at multiple lysine residues of Bam's C-terminal region. Genetic evidence further supports the notion that Cul2-mediated Bam ubiquitination and turnover are essential for GSC maintenance and proper germline development. Collectively, our data not only uncovers a novel regulatory mechanism by which Bam is controlled at the post-translational level, but also provides new insights into how Cullin family protein determines the differentiation fate of early germ cells.


Assuntos
Drosophila , Ubiquitina-Proteína Ligases , Feminino , Animais , Proteínas Culina/genética , Células Germinativas , Diferenciação Celular/genética
7.
Cancer Sci ; 115(4): 1261-1272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279197

RESUMO

Current literature emphasizes surgical complexities and customized resection for managing insular gliomas; however, radiogenomic investigations into prognostic radiomic traits remain limited. We aimed to develop and validate a radiomic model using multiparametric magnetic resonance imaging (MRI) for prognostic prediction and to reveal the underlying biological mechanisms. Radiomic features from preoperative MRI were utilized to develop and validate a radiomic risk signature (RRS) for insular gliomas, validated through paired MRI and RNA-seq data (N = 39), to identify core pathways underlying the RRS and individual prognostic radiomic features. An 18-feature-based RRS was established for overall survival (OS) prediction. Gene set enrichment analysis (GSEA) and weighted gene coexpression network analysis (WGCNA) were used to identify intersectional pathways. In total, 364 patients with insular gliomas (training set, N = 295; validation set, N = 69) were enrolled. RRS was significantly associated with insular glioma OS (log-rank p = 0.00058; HR = 3.595, 95% CI:1.636-7.898) in the validation set. The radiomic-pathological-clinical model (R-P-CM) displayed enhanced reliability and accuracy in prognostic prediction. The radiogenomic analysis revealed 322 intersectional pathways through GSEA and WGCNA fusion; 13 prognostic radiomic features were significantly correlated with these intersectional pathways. The RRS demonstrated independent predictive value for insular glioma prognosis compared with established clinical and pathological profiles. The biological basis for prognostic radiomic indicators includes immune, proliferative, migratory, metabolic, and cellular biological function-related pathways.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Reprodutibilidade dos Testes , Radiômica , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Prognóstico
8.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297486

RESUMO

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Assuntos
Lesões das Artérias Carótidas , Músculo Liso Vascular , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Plaquetas/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/complicações , Neointima/metabolismo , Neointima/patologia
9.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752622

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Arabidopsis/metabolismo , Morte Celular , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
10.
J Bioenerg Biomembr ; 56(1): 55-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041751

RESUMO

Circular RNAs (circRNAs) showing unusual expressions have been discovered in pancreatic adenocarcinoma (PAAD). However, the functions and underlying mechanisms of these circRNAs still remain largely unclear. Our current study discovered a notable increase in the expression of circRNA hsa_circ_0002395 (circ_0002395) in both PAAD tissues and cell lines. This up-regulation of circ_0002395 was found to be associated with larger tumor sizes and lymph node metastasis. Furthermore, our findings showed that circ_0002395 facilitated aerobic glycolysis and cell proliferation in PAAD cells by regulating the miR-548c-3p/PDK1 axis. Mechanistically, we identified circ_0002395 as a competing endogenous RNA (ceRNA) that sponged miR-548c-3p, thereby promoting PDK1 expression and aerobic glycolysis, and ultimately resulting in the enhancement of cell proliferation. Our findings found that circ_0002395 promoted proliferation of PAAD cells by enhancing PDK1 expression and aerobic glycolysis by sponging miR-548c-3p.


Assuntos
Adenocarcinoma , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Proliferação de Células , Glicólise
11.
Plant Physiol ; 191(1): 515-527, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36087013

RESUMO

Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.


Assuntos
Cádmio , Oryza , Cádmio/metabolismo , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Melhoramento Vegetal , Grão Comestível/metabolismo , Plântula/metabolismo , Raízes de Plantas/metabolismo , Defensinas/genética , Defensinas/análise , Defensinas/metabolismo
12.
Plant Cell Environ ; 47(3): 799-816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111215

RESUMO

Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
13.
Langmuir ; 40(22): 11817-11827, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760325

RESUMO

Improving the dispersibility and compatibility of nanomaterials in water-borne epoxy resins is an important means to improve the protection ability and corrosion resistance of coatings. In this study, glycine-functionalized Ti3C2Tx (GT) was used to prepare an epoxy composite coating. The results of Fourier transform infrared spectroscopy and X-ray diffraction showed that glycine was successfully modified. The scanning electron microscopy and transmission electron microscopy results showed that the aggregation of Ti3C2Tx was alleviated. Electrochemical impedance spectroscopy test results show that, after 60 days of immersion, GT coating still shows the best protection performance, and the composite coating |Z|f = 0.01 Hz is 3 orders of magnitude higher than that of the pure epoxy coating. This is mainly because, after adding glycine, the -COOH group on the surface of glycine binds to the -OH group on the surface of Ti3C2Tx, improving the aggregation of Ti3C2Tx itself. At the same time, the -NH group of glycine can also participate in the curing reaction of epoxy resin to strengthen the bonding strength between the coating and the metal. The good dispersion of GT in epoxy resin makes it fill the pores and holes left by epoxy resin curing and strengthen the corrosion resistance. The easy availability and green properties of glycine provide a simple and environmentally friendly method for the modification of Ti3C2Tx.

14.
Soft Matter ; 20(16): 3401-3410, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563244

RESUMO

Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.


Assuntos
Biofilmes , Estresse Mecânico , Anisotropia , Modelos Biológicos
15.
Inorg Chem ; 63(19): 8879-8888, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676642

RESUMO

Transition-metal-catalyzed, strain-release-driven transformations of "spring-loaded" bicyclo[1.1.0]butanes (BCBs) are considered potent tools in synthetic organic chemistry. Previously proposed strain-release mechanisms involve either the insertion of the central C-C bond of BCBs into a metal-carbon bond, followed by ß-C elimination, or the oxidative addition of the central or lateral C-C bond on the transition metal center, followed by reductive elimination. This study, employing DFT calculations on a Rh(III)-catalyzed model system in a three-component protocol involving oxime ether, BCB ester, and ethyl glyoxylate for constructing diastereoselective quaternary carbon centers, introduces an unusual strain-release mechanism for BCBs. In this mechanism, the catalytic reaction is initiated by the simultaneous cleavage of two C-C bonds (the central and lateral C-C bonds), resulting in the formation of a Rh-carbene intermediate. The new mechanism exhibits a barrier of 21.0 kcal/mol, making it energetically more favorable by 11.1 kcal/mol compared to the previously suggested most favorable pathway. This unusual reaction mode rationalizes experimental observation of the construction of quaternary carbon centers, including the excellent E-selectivity and diastereoselectivity. The newly proposed strain-release mechanism holds promise in advancing our understanding of transition-metal-catalyzed C-C bond activation mechanisms and facilitating the synthesis of transition metal carbene complexes.

16.
Inorg Chem ; 63(12): 5497-5508, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38483825

RESUMO

Uranium-containing silica gel (UCSG) is a secondary waste generated during the advanced treatment of nuclear wastewater. In order to reduce the growing storage pressure for UCSG, from the perspective of building a borosilicate glass network, UCSG was used to replace SiO2 in the glass-cured formula to directly achieve the immobilization of UCSG. SEM-EDS results showed that uranium was uniformly distributed in the matrix, and the maximum solid solubility of UCSG (two components: silica gel and uranyl ions) in the formula was as high as 55 wt %. At the same time, TG-MS proved that silica gel lost OH groups (down about 4.61 wt %) and formed Si-O-Si bond by condensation. FT-IR and XPS proved a change in the number of Si-O-Si bond, and new Si-O-B and Si-O-Al bond appeared on the spectrum. This was evidence that silica gel could self-involved participate in the construction of glass networks. EPR analysis obtained the changes in the coordination environment of U atom, the U atom decreased spin electrons number in the glass than in uranyl crystals. The glass also has good physical properties (hardness: 6.51 ± 0.23 GPa; density: 2.3977 ± 0.0056 g/cm3) and chemical durability (normalized leaching rate: LRU = 2.34 × 10-4 ± 2.05 × 10-6 g·m2·days-1 after 42 days), this research provided tactics for simple treatment of uranium-containing silica gel in one step.

17.
J Chem Inf Model ; 64(7): 2221-2235, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158609

RESUMO

Noncoding RNAs (ncRNAs) play crucial roles in many cellular life activities by interacting with proteins. Identification of ncRNA-protein interactions (ncRPIs) is key to understanding the function of ncRNAs. Although a number of computational methods for predicting ncRPIs have been developed, the problem of predicting ncRPIs remains challenging. It has always been the focus of ncRPIs research to select suitable feature extraction methods and develop a deep learning architecture with better recognition performance. In this work, we proposed an ensemble deep learning framework, RPI-EDLCN, based on a capsule network (CapsuleNet) to predict ncRPIs. In terms of feature input, we extracted the sequence features, secondary structure sequence features, motif information, and physicochemical properties of ncRNA/protein. The sequence and secondary structure sequence features of ncRNA/protein are encoded by the conjoint k-mer method and then input into an ensemble deep learning model based on CapsuleNet by combining the motif information and physicochemical properties. In this model, the encoding features are processed by convolution neural network (CNN), deep neural network (DNN), and stacked autoencoder (SAE). Then the advanced features obtained from the processing are input into the CapsuleNet for further feature learning. Compared with other state-of-the-art methods under 5-fold cross-validation, the performance of RPI-EDLCN is the best, and the accuracy of RPI-EDLCN on RPI1807, RPI2241, and NPInter v2.0 data sets was 93.8%, 88.2%, and 91.9%, respectively. The results of the independent test indicated that RPI-EDLCN can effectively predict potential ncRPIs in different organisms. In addition, RPI-EDLCN successfully predicted hub ncRNAs and proteins in Mus musculus ncRNA-protein networks. Overall, our model can be used as an effective tool to predict ncRPIs and provides some useful guidance for future biological studies.


Assuntos
Aprendizado Profundo , Animais , Camundongos , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Proteínas , Redes Neurais de Computação
18.
J Pathol ; 260(2): 190-202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825552

RESUMO

Amine oxidase copper-containing 3 (AOC3) is a member of the semicarbazide-sensitive amine oxidase enzyme family. It acts as an ectoenzyme catalysing the oxidative deamination of primary amines and generating hydrogen peroxide (H2 O2 ). While AOC3 is implicated in cardiovascular diseases such as atherosclerosis, its role in cardiac remodelling after myocardial infarction (MI) is unclear. In this study, we first confirmed a long-term upregulation of AOC3 in both cardiac myofibroblasts after MI in vivo and angiotensin II (ANGII)-treated cardiac fibroblasts in vitro. AOC3 knockdown not only inhibited the activation of cardiac fibroblasts induced by ANGII but also alleviated cardiac fibrosis in mice after MI. Using sh-AOC3 lentiviruses, exogenous recombinant AOC3 (r-AOC3), semicarbazide (an AOC3 inhibitor), and catalase (a hydrogen peroxide scavenger) treatments, we also demonstrated that AOC3 promoted H2 O2 generation, increased oxidative stress, and enhanced ERK1/2 activation, which were responsible for the activation of cardiac fibroblasts. In particular, AOC3 knockdown also improved cardiac function and hypertrophy after MI. Through a coculture system, we confirmed that AOC3 expressed on cardiac myofibroblasts was able to enhance oxidative stress and induce hypertrophy of cardiomyocytes by promoting H2 O2 generation. Similarly, r-AOC3 promoted H2 O2 generation and resulted in oxidative stress and hypertrophy of cardiomyocytes, which were almost inhibited by both semicarbazide and catalase. In conclusion, AOC3 plays a critical role in cardiac fibrosis and hypertrophy after MI by promoting the generation of H2 O2 . AOC3 is a promising therapeutic target against cardiac remodelling. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Peróxido de Hidrogênio , Infarto do Miocárdio , Camundongos , Animais , Catalase/genética , Cobre , Remodelação Ventricular , Moléculas de Adesão Celular , Aminas , Infarto do Miocárdio/genética , Hipertrofia , Fibrose , Semicarbazidas/farmacologia
19.
Bioorg Chem ; 151: 107686, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39111120

RESUMO

A series of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors were designed and synthesized by heterocyclic-containing tail approach. The inhibitory activities against four human epidermal growth factor receptor (HER) isozymes (EGFR, HER-2, HER-3 and HER-4) of all new compounds so designed were investigated in vitro. Compound 12k was found to be the most effective and rather selective dual-target inhibitor of EGFR and HER-2 with inhibitory constant (IC50) values of 6.15 and 9.78 nM, respectively, which was more potent than the clinical used agent Lapatinib (IC50 = 8.41 and 9.41 nM). Meanwhile, almost all compounds showed excellent antiproliferative activities against four cancer cell models (A549, NCI-H1975, SK-BR-3 and MCF-7) and low damage to healthy cells. Among them, compound 12k also exhibited the most prominent antitumor activity. Moreover, the hit compound 12k could bind to EGFR and HER-2 stably in molecular docking and dynamics studies. The following wound healing assay revealed that compound 12k could inhibit the migration of SK-BR-3 cells. Further studies found that compound 12k could arrest cell cycle in the G0/G1 phase and induce SK-BR-3 cells apoptosis. Notably, compound 12k could effectively inhibit breast cancer growth with little toxicity in the SK-BR-3 cell xenograft model. Taken together, in vitro and in vivo results disclosed that compound 12k had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth.

20.
Bioorg Chem ; 148: 107491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788365

RESUMO

As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Proteoma , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Humanos , Proteoma/análise , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Imagem Óptica , Relação Dose-Resposta a Droga , Proteômica , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA