Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3112-3117, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416575

RESUMO

Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.

2.
Nano Lett ; 24(11): 3323-3330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466652

RESUMO

Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.

3.
Phytopathology ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749069

RESUMO

The previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either T6SS or T4SS. This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with stains defective in T6SS or/and T4SS confirm that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose-deposition in the course of infection. Notably, this redundant secretion mechanism between T6SS and T4SS is believed to be the first of its kind in bacteria.

4.
Nat Commun ; 13(1): 2789, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589801

RESUMO

High-entropy alloys (HEAs), although often presumed to be random solid solutions, have recently been shown to display nanometer-scale variations in the arrangements of their multiple chemical elements. Here, we study the effects of this compositional heterogeneity in HEAs on their mechanical properties using in situ compression testing in the transmission electron microscope (TEM), combined with molecular dynamics simulations. We report an anomalous size effect on the yield strength in HEAs, arising from such compositional heterogeneity. By progressively reducing the sample size, HEAs initially display the classical "smaller-is-stronger" phenomenon, similar to pure metals and conventional alloys. However, as the sample size is decreased below a critical characteristic length (~180 nm), influenced by the size-scale of compositional heterogeneity, a transition from homogeneous deformation to a heterogeneous distribution of planar slip is observed, coupled with an anomalous "smaller-is-weaker" size effect. Atomic-scale computational modeling shows these observations arise due to compositional fluctuations over a few nanometers. These results demonstrate the efficacy of influencing mechanical properties in HEAs through control of local compositional variations at the nanoscale.

5.
Curr Gene Ther ; 22(1): 66-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34148538

RESUMO

AIMS: We aim to define parameters that affect the safety and long-term transgene expression of attenuated HSV-1 vectors and optimize the expression cassettes to achieve robust and sustained expression in CNS. BACKGROUND: Engineered, attenuated Herpes Simplex Virus (HSV) vectors are promising vehicles for gene delivery to the peripheral and central nervous systems. The virus latent promoter (LAP) is commonly used to drive exogenous gene expression; however, parameters affecting the safety and longterm transgene expression of attenuated HSV-1 vectors have not been fully understood. OBJECTIVE: The study aimed at using CRISPR-Cas9 system to construct attenuated HSV-1 vectors and examine the influence of transgene cassette construction and insertion site on transgene expression and vector safety. METHODS: In this study, we used a CRISPR-Cas9 system to accurately and efficiently edit attenuated HSV-1 strain 1716, and construct two series of recombinant virus LMR and LMRx with different sets of gene cassettes insertion in Exon1(LAP2) and 2.0 kb intron downstream of LAP, respectively. The transgene expression and viral gene transcriptional kinetics were compared in in vitro cell lines. The reporter gene expression and safety profiles of each vector were further evaluated in mouse hippocampus gene transduction model. RESULTS: The in vitro cell line analysis indicated that the insertion of a gene expression cassette would disrupt virus gene transcription. Mouse hippocampus transducing analysis suggested that complete expression cassette insertion at 2.0 kb intron could achieve robust and longtime gene expression than the other constructs. Recombinants with gene expression cassettes lacking Poly (A) induced significant neuronal inflammation due to persistent viral antigen expression and microglia activation. CONCLUSION: Our results indicated that the integrity of LAT transcripts was not necessary for establishment of long-term latent expression. Exogenous strong promoters (like cBh promoter) could remain active during latency when placed in Exon1 or 2.0 Kb Intron of LAT locus, although their transcriptional activity declined with time. Consistent with previous research, the foreign gene expression would last much longer when the gene cassette was located downstream of Exon1, which suggested a role of LAP2 in maintaining promoter activity during latency. Besides, over-transcription of the downstream part of LAT may induce continuous activation of the attenuated vectors, which suggests an important role of LAT in maintaining viral reactivation potential.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Sistemas CRISPR-Cas/genética , Sistema Nervoso Central , Edição de Genes , Herpes Simples/genética , Herpesvirus Humano 1/genética , Camundongos
6.
Mol Plant Pathol ; 21(6): 871-891, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32267092

RESUMO

Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.


Assuntos
Calla (Planta)/microbiologia , Interações Hospedeiro-Patógeno , Pectobacterium/genética , Doenças das Plantas/microbiologia , Transcriptoma , Adaptação Fisiológica , Perfilação da Expressão Gênica , Glucanos/metabolismo , Pectobacterium/patogenicidade , Pectobacterium/fisiologia , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Virulência/genética
7.
Biofabrication ; 6(3): 035022, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25121715

RESUMO

Modified laser-induced forward transfer has emerged as a promising bioprinting technique. Depending on the operating conditions and cell properties, laser cell printing may cause cell injury and even death, which should be carefully elucidated for it to be a viable technology. This study has investigated the effects of alginate gelation, gelation time, alginate concentration, and laser fluence on the post-transfer cell viability of NIH 3T3 fibroblasts. Sodium alginate and calcium chloride are used as the gel precursor and gel reactant solution to form cell-laden alginate microspheres. It is found that the effects of gelation depend on the duration of gelation. Two-minute gelation is observed to increase the cell viability after 24 h incubation, mainly due to the protective cushion effect of the forming gel membrane during droplet landing. Despite the cushion effect from 10 min gelation, it is observed that the cell viability decreases after 24 h incubation because of the forming thick gel membrane that reduces nutrient and oxygen diffusion from the culture medium. In addition, the cell viability after 24 h incubation decreases as the laser fluence or alginate concentration increases.


Assuntos
Alginatos/efeitos adversos , Bioimpressão/instrumentação , Morte Celular/efeitos da radiação , Fibroblastos/citologia , Lasers/efeitos adversos , Células 3T3 , Alginatos/química , Animais , Cloreto de Cálcio/efeitos adversos , Cloreto de Cálcio/química , Ácido Glucurônico/efeitos adversos , Ácido Glucurônico/química , Ácidos Hexurônicos/efeitos adversos , Ácidos Hexurônicos/química , Camundongos , Microesferas , Engenharia Tecidual/instrumentação
8.
Biofabrication ; 5(1): 015002, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23172571

RESUMO

Laser-assisted printing such as laser-induced forward transfer has been well studied to pattern or fabricate two-dimensional constructs. In particular, laser printing has found increasing biomedical applications as an orifice-free cell and organ printing approach, especially for highly viscous biomaterials and biological materials. Unfortunately, there have been very few studies on the efficacy of three-dimensional printing performance of laser printing. This study has investigated the feasibility of laser tube printing and the effects of sodium alginate concentration and operating conditions such as the laser fluence and laser spot size on the printing quality during laser-assisted printing of alginate annular constructs (short tubes) with a nominal diameter of 3 mm. It is found that highly viscous materials such as alginate can be printed into well-defined long tubes and annular constructs. The tube wall thickness and tube outer diameter decrease with the sodium alginate concentration, while they first increase, then decrease and finally increase again with the laser fluence. The sodium alginate concentration dominates if the laser fluence is low, and the laser fluence dominates if the sodium alginate concentration is low.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Bioimpressão/métodos , Engenharia Tecidual/instrumentação , Materiais Biocompatíveis/síntese química , Bioimpressão/instrumentação , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Lasers , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA