RESUMO
Due to the inappropriate disposal of waste materials containing lead (Pb) and irrigation with sewage containing Pb, the migration of Pb2+ within the soil profile has been extensively investigated. The conventional Pb2+ block method is challenging to implement due to its complex operational procedures and high construction costs. To address this issue, this study introduces the microbial-induced carbonate precipitation (MICP) technique as a novel approach to impede the migration of Pb2+ in the soil profile. Soil acclimatization with urea resulted in an increased proportion of urease-producing microorganisms, including Bacillus, Paenibacillus, and Planococcaceae, along with heightened expression of urea-hydrolyzing genes (UreA, UreB, UreC, and UreG). This indicates that urea-acclimatized soil (Soil-MICP) possesses the potential to induce carbonate precipitation. Batch Pb2+ fixation experiments confirmed that the fixation efficiency of Soil-MICP on Pb2+ exceeded that of soil without MICP, attributed to the MICP process within the Soil-MICP group. Dynamic migration experiments revealed that the MICP reaction transformed exchangeable lead into carbonate-bound Pb, effectively impeding Pb2+ migration in the soil profile. Additionally, the migration rate of Pb2+ in Soil-MICP was influenced by varying urea amounts, pH levels, and pore flow rates, leading to a slowdown in migration. The Two-site sorption model aptly described the Pb2+ migration process in the Soil-MICP column. This study aims to elucidate the MICP biomineralization process, uncover the in-situ blocking mechanism of MICP on lead in soil, investigate the impact of Pb on key genes involved in urease metabolism, enhance the comprehension of the chemical morphology of lead mineralization products, and provide a theoretical foundation for MICP technology in preventing the migration of Pb2+ in soil profiles.
Assuntos
Carbonatos , Chumbo , Microbiologia do Solo , Poluentes do Solo , Solo , Solo/química , Urease/metabolismo , Precipitação QuímicaRESUMO
A pot experiment was conducted to reveal the effects of intercropping a low-cadmium (Cd) accumulating cultivar and a Cd hyperaccumulator on the safe utilization and phytoextraction of Cd-polluted soils. Two cultivars of Brassica chinensis L. (the low-Cd accumulating cultivar Huajun, and the common cultivar Hanlü), were intercropped with four cultivars of Tagetes patula L. (Dwarf Red, Dwarf Yellow, Tall Red, and Tall Yellow). We examined the biomass, photosynthetic characteristics, and Cd accumulation in the plants and available Cd content and dissolved organic carbon (DOC) content in the soils. The results show that under the intercropping treatments, the biomass of B. chinensis decreased significantly and those of T. patula increased significantly, compared with the monoculture treatments. When intercropped with T. patula, the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of B. chinensis decreased significantly, compared with the monoculture treatments. When Huajun was intercropped with Dwarf Red, the shoot Cd content of Huajun significantly decreased by 14.5%, and that of Dwarf Red increased significantly by 36.5% compared with the monoculture. Under the other intercropping treatments, the shoot Cd content of B. chinensis increased significantly, or showed no significant change, and that of T. patula showed no significant change. Under the intercropping treatments, the total amount of Cd in the shoot of B. chinensis decreased significantly, and that of T. patula increased significantly, compared with the monoculture. There were no significant differences in the Cd extraction ratios between the intercropping treatments and the monoculture of T. patula. The shoot Cd content of B. chinensis was significantly correlated with soil available Cd content and DOC content (P<0.01 and P<0.05, respectively). In conclusion, the intercropping treatment of Huajun and Dwarf Red significantly reduced shoot Cd content in B. chinensis and increased that in T. patula, and it did not affect the Cd extraction ratio. This is suitable for the safe utilization and phytoextraction of Cd-polluted soils.