RESUMO
Developing high-performance and stable Sn-based perovskite solar cells (PSCs) is difficult due to the inherent tendency of Sn2+ oxidation and, the huge energy mismatch between perovskite and Phenyl-C61-butyric acid methyl ester (PCBM), a frequently employed electron transport layer (ETL). This study demonstrates that perovskite surface defects can be passivated and PCBM's electrical properties improved by doping n-type polymer N2200 into PCBM. The doping of PCBM with N2200 results in enhanced band alignment and improved electrical properties of PCBM. The presence of electron-donating atoms such as S, and O in N2200, effectively coordinates with free Sn2+ to prevent further oxidation. The doping of PCBM with N2200 offers a reduced conduction band offset (from 0.38 to 0.21 eV) at the interface between the ETL and perovskite. As a result, the N2200 doped PCBM-based PSCs show an enhanced open circuit voltage of 0.79 V with impressive power conversion efficiency (PCE) of 12.98% (certified PCE 11.95%). Significantly, the N2200 doped PCBM-based PSCs exhibited exceptional stability and retained above 90% of their initial PCE when subjected to continuous illumination at maximum power point tracking for 1000 h under one sun.
RESUMO
BACKGROUND: Patients with cancer, particularly those undergoing chemotherapy, are at risk from the low immunogenicity of Coronavirus Disease 19 (COVID-19) vaccines. METHODS: This prospective study assessed the seroconversion rate of COVID-19 vaccines among patients with cancer and hospital staff. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific IgG (S-IgG) concentrations were evaluated before the first vaccination, and 1-3 and 4-6 months after the second vaccination. The primary endpoint was the seroconversion rate measured 1-3 months after the second vaccine. RESULTS: In total, 590 patients and 183 healthy hospital staff were analyzed. At 1-3 months after the second vaccination, the S-IgG antibody concentration exceeded the cut-off value (20 BAU/mL) in 96.1% (567/590) of the patients with cancer and 100% (183/183) of the healthy controls (p = 0.0024). At 4-6 months after the second vaccination, the S-IgG antibody concentration exceeded the cut-off value (20 BAU/ml for S-IgG) in 93.1% (461/495) of the patients with cancer and 100% (170/170) of the healthy controls (p < 0.0001). Old age, being male, and low lymphocyte count were related to low SARS-CoV-2 S-IgG levels 1-3 months after the second vaccination among patients, while body mass index, smoking history, and serum albumin level were not. Patients undergoing platinum combination therapy and alkylating agent among cytotoxic drugs, and PARP inhibitor, mTOR inhibitor, and BCR-ABL inhibitor exhibited a low S-IgG antibody concentration compared to the no treatment group. CONCLUSIONS: COVID-19 vaccine immunogenicity was reduced among patients with cancer, especially under several treatment regimens.
Assuntos
COVID-19 , Neoplasias , Feminino , Humanos , Masculino , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Imunoglobulina G , Neoplasias/tratamento farmacológico , Estudos Prospectivos , SARS-CoV-2 , Vacinação , IdosoRESUMO
We use photoinduced absorption spectroscopy (PAS) to study the ionic motion in CH3NH3PbI3 perovskite solar cells, consisting of indium tin oxide (ITO)/NiOx/perovskite/phenyl-C61-butyric-acid-methyl ester (PCBM)/aluminum-doped zinc oxide (AZO)/ITO. We observed a slow (â¼50 mHz) spectral blue shift (â¼10-4 eV) under modulated 520 nm illumination, which we interpreted in terms of the modulation in the bulk ion density. Numerical simulation shows that the mobile ion moves in and out from the double layers at the perovskite/charge transport layer interfaces in order to recover the bulk charge neutrality tipped off-balance by the photocarriers. The diffusion coefficient of the ion is 10-10 to 10-11 cm2 s-1, when we assume that the characteristic time constant of the ion motion is governed by the diffusion.
RESUMO
We studied perovskite photovoltaic devices with intensity-modulated photovoltage spectroscopy. Two coexisting relaxation times are found in accordance with the results of previous impedance spectroscopy (IS) measurements. The slower time constant is independent of the light power while the faster one is inversely proportional to the light power. We employed the surface polarization picture used in the IS analysis augmented by a plausible assumption that the surface polarization is proportional to the light intensity to explain the inverse power dependence of the fast time constant. Because the surface polarization results from the surface accumulated charges, its lateral (parallel to the electrode) distribution and dynamics should be known. We present evidence that the surface accumulated charges indeed form a two-dimensional layer, and have a finite binding energy and a diffusion length.
RESUMO
Organic-inorganic hybrid perovskite solar cells have demonstrated unprecedented high power conversion efficiencies in the past few years. Now, the universal instability of the perovskites has become the main barrier for this kind of solar cells to realize commercialization. This situation can be even worse for those tin-based perovskites, especially for CsSnI3, because upon exposure to ambient atmosphere the desired black orthorhombic phase CsSnI3 would promptly lose single crystallinity and degrade to the inactive yellow phase, followed by irreversible oxidation into metallic Cs2SnI6. By alloying CsSnI3 with CsPbI3, we herein report the synthesis of alloyed perovskite quantum dot (QD), CsSn1-xPbxI3, which not only can be phase-stable for months in purified colloidal solution but also remains intact even directly exposed to ambient air, far superior to both of its parent CsSnI3 and CsPbI3 QDs. Ultrafast transient absorption spectroscopy studies reveal that the photoexcited electrons in the alloyed QDs can be injected into TiO2 nanocrystals at a fast rate of 1.12 × 1011 s-1, which enables a high photocurrent generation in solar cells.
RESUMO
The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an ideal intrinsic semiconductor, which happens to be very robust against accidental doping, and that the perovskite photovoltaic cell is in fact a model p-i-n diode. The analytical methods and diagnostic tools available in the inorganic semiconductor PV cells are useful and should be fully exploited in the effort of improving the efficiency. One outstanding question is why the perovskite stays intrinsic. Considering the defects and impurities that must abound in the perovskite layers formed by the spin-coating process, for example, there must be physicochemical mechanism keeping it from being doped. This may be related to the special band structure making up the band gap in this ionic solid. Understanding the mechanism may open a door for the wider utility of this class of solid.
RESUMO
Molecular passivation is a prominent approach for improving the performance and operation stability of halide perovskite solar cells (HPSCs). Herein, we reveal discernible effects of diammonium molecules with either an aryl or alkyl core onto Methylammonium-free perovskites. Piperazine dihydriodide (PZDI), characterized by an alkyl core-electron cloud-rich-NH terminal, proves effective in mitigating surface and bulk defects and modifying surface chemistry or interfacial energy band, ultimately leading to improved carrier extraction. Benefiting from superior PZDI passivation, the device achieves an impressive efficiency of 23.17% (area ~1 cm2) (low open circuit voltage deficit ~0.327 V) along with superior operational stability. We achieve a certified efficiency of ~21.47% (area ~1.024 cm2) for inverted HPSC. PZDI strengthens adhesion to the perovskite via -NH2I and Mulliken charge distribution. Device analysis corroborates that stronger bonding interaction attenuates the defect densities and suppresses ion migration. This work underscores the crucial role of bifunctional molecules with stronger surface adsorption in defect mitigation, setting the stage for the design of charge-regulated molecular passivation to enhance the performance and stability of HPSC.
RESUMO
BACKGROUND: NY-ESO-1 and XAGE1 cancer/testis antigens elicit humoral and cellular immune responses in NSCLC patients. We aimed to predict clinical benefit with ICI monotherapy, using an automated immunoassay of NY-ESO-1/XAGE1 antibodies (Abs). METHODS: This study enrolled 99 NSCLC patients who received nivolumab after chemotherapy, including 21 patients harboring EGFR, ALK, or KRAS alterations. The cutoff value (10 units/mL) of NY-ESO-1 and XAGE1 Ab was determined based on Ab levels in non-malignant controls, and NY-ESO-1/XAGE1 Abs in NSCLC were measured before nivolumab. Differences in PFS and OS between the Ab-positive and Ab-negative groups were retrospectively analyzed using Cox regression analysis after applying inverse probability of treatment weighting (IPTW). RESULTS: NY-ESO-1/XAGE1 Abs were positive in 28 NSCLC, who responded more highly to nivolumab than the Ab-negatives (response rate 50.0% vs. 15.5 %, p < 0.0007). The IPTW-adjusted positives and negatives for NY-ESO-1/XAGE1 Abs were 24.5 and 70.2, respectively. The Ab-positives showed longer IPTW-adjusted PFS (HR = 0.59, 95 % CI: 0.39-0.90, p = 0.014) and IPTW-adjusted OS (HR = 0.51, 95 % CI: 0.32-0.81, p = 0.004) than the Ab-negatives. Among NSCLC harboring driver genes, the Ab-positives (n = 10) showed longer PFS (HR = 0.34, 95 % CI: 0.13-0.89, p = 0.029) and OS (HR = 0.27, 95 % CI: 0.098-0.75, p = 0.012) than the Ab-negatives (n = 11). CONCLUSION: Our immunoassay of NY-ESO-1/XAGE1 Abs is probably useful for predicting the clinical benefit with nivolumab in NSCLC, including those harboring driver genes. These results suggest that our immunoassay may be useful in ICI monotherapy for NSCLC.
Assuntos
Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Proteínas de Membrana , Nivolumabe , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Masculino , Feminino , Proteínas de Membrana/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Idoso , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Estudos Retrospectivos , Imunoensaio/métodos , Nivolumabe/uso terapêutico , Idoso de 80 Anos ou mais , Adulto , Biomarcadores Tumorais/sangueRESUMO
The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.
Assuntos
Proliferação de Células , Leucemia Megacarioblástica Aguda , Receptores Notch , Transdução de Sinais , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Leucemia Megacarioblástica Aguda/metabolismo , Humanos , Animais , Receptores Notch/metabolismo , Receptores Notch/genética , Camundongos , Sobrevivência Celular , Linhagem Celular Tumoral , Mutação , Feminino , MasculinoRESUMO
BACKGROUND/AIM: The severity and associated mortality of coronavirus disease 2019 (COVID-19) are higher in patients with thoracic cancer than in healthy populations and those with other cancer types. Here, we investigated real-world data on the incidence of COVID-19 and false-negative cases using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing in patients with thoracic cancer. PATIENTS AND METHODS: We retrospectively reviewed patients with advanced thoracic cancer at the National Cancer Center Hospital between March 2020-May 2021. Blood samples were collected and evaluated for IgM and IgG antibodies specific for nucleocapsid (N) and spike (S) protein SARS-CoV-2 before and after rRT-PCR testing. False-negative cases were assessed based on anti-SARS-CoV-2 antibody levels before and after rRT-PCR testing. RESULTS: A total of 2,107 patients with thoracic cancer were identified between March 2020 and May 2021, 7 (0.3%) of whom developed COVID-19. Among the 218 patients who underwent at least one rRT-PCR test because of suspected COVID-19 symptoms or as a screening test at our institute, the most common diagnosis was non-COVID-19 pneumonia (34.4%), followed by tumor fever (30.7%). Furthermore, of the 218 patients, 120 paired serum samples before and after rRT-PCR testing were available. Seroconversion was identified in all three patients with positive SARS-CoV-2 rRT-PCR results but was only observed in 1 out of the 117 patients who tested negative; the rate of false-negative cases was low (0.9%). CONCLUSION: COVID-19 incidence among patients with advanced thoracic cancer was low during the early phase of the pandemic in Japan.
Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Pandemias , Incidência , Japão/epidemiologia , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Neoplasias/epidemiologiaRESUMO
Hierarchical TiO(2) ellipsoids 250-500 nm in size have been synthesized on a large scale by a template-free hydrothermal route. The submicrometer-sized hierarchitectures are assembled from highly crystallized anatase nanorods about 17 nm in diameter with macroporous cavities on the outer shells. Based on the time-dependent morphological evolution under hydrothermal conditions, an oriented attachment process is proposed to explain formation of the hierarchical structures. Such hierarchical TiO(2) not only adsorbs large amounts of dye molecules due to high surface area, but also shows good light scattering caused by the submicrometer size. The TiO(2) hierarchitectures were deposited on top of a transparent TiO(2) nanocrystalline main layer to construct a double-layered photoanode for dye-sensitized solar cell (DSC) application, exhibiting enhanced light harvesting and power-conversion efficiency compared to a commercial TiO(2)-based electrode.
RESUMO
Sputtered NiO x (sp-NiO x ) is a preferred hole transporting material for perovskite solar cells because of its hole mobility, ease of manufacturability, good stability, and suitable Fermi level for hole extraction. However, uncontrolled defects in sp-NiO x can limit the efficiency of solar cells fabricated with this hole transporting layer. An interfacial layer has been proposed to modify the sp-NiO x /perovskite interface, which can contribute to improving the crystallinity of the perovskite film. Herein, a 2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer was used to modify an sp-NiO x surface. We found that the MeO-2PACz interlayer improves the quality of the perovskite film due to an enlarged domain size, reduced charge recombination at the sp-NiO x /perovskite interface, and passivation of the defects in sp-NiO x surfaces. In addition, the band tail states are also reduced, as indicated by photothermal deflection spectroscopy, which thus indicates a reduction in defect levels. The overall outcome is an improvement in the device efficiency from 11.9% to 17.2% due to the modified sp-NiO x /perovskite interface, with an active area of 1 cm2 (certified efficiency of 16.25%). On the basis of these results, the interfacial engineering of the electronic properties of sp-NiO x /MeO-2PACz/perovskite is discussed in relation to the improved device performance.
RESUMO
The clinical usage of induced pluripotent stem cell (iPSC)-derived regenerative medicine products is limited by the possibility of residual undifferentiated cells forming tumours after transplantation. Most of the existing quality control tests involve crushing of cells. As a result, the cells to be transplanted cannot be directly tested, thereby increasing the cost of transplantation. Therefore, we tested a highly sensitive and non-disruptive quality-testing method that involves measuring microRNAs (miRNAs) in culture supernatants released by cells. By measuring miR-302b in the culture supernatant, residual iPSCs were detected with higher sensitivity than by measuring LIN28 (Lin-28 Homolog A) in the cells. To use this method, we also monitored the progression of differentiation. Our novel highly sensitive and non-disruptive method for detecting residual undifferentiated cells will contribute to reducing the manufacturing cost of iPSC-derived products and improving the safety of transplantation.
Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Diferenciação Celular , MicroRNAs/genéticaRESUMO
Drug selection and treatment monitoring via minimally invasive liquid biopsy using circulating tumor cells (CTCs) are expected to be realized in the near future. For clinical applications of CTCs, simple, high-throughput, single-step CTC isolation from whole blood without red blood cell (RBC) lysis and centrifugation remains a crucial challenge. In this study, we developed a novel cancer cell separation chip, "hybrid double-spiral chip", that involves the serial combination of two different Dean flow fractionation (DFF) separation modes of half and full Dean cycles, which is the hybrid DFF separation mode for ultra-high-throughput blood processing at high precision and size-resolution separation. The chip allows fast processing of 5 mL whole blood within 30 min without RBC lysis and centrifugation. RBC and white blood cell (WBC) depletion rates of over 99.9% and 99%, respectively, were achieved. The average recovery rate of spiked A549 cancer cells was 87% with as low as 200 cells in 5 mL blood. The device can achieve serial reduction in the number of cells from approximately 1010 cells of whole blood to 108 cells, and subsequently to an order of 106 cells. The developed method can be combined with measurements of all recovered cells using imaging flow cytometry. As proof of concept, CTCs were successfully enriched and enumerated from the blood of metastatic breast cancer patients (N = 10, 1-69 CTCs per 5 mL) and metastatic prostate cancer patients (N = 10, 1-39 CTCs per 5 mL). We believe that the developed method will be beneficial for automated clinical analysis of rare CTCs from whole blood.
Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia , Separação Celular , Eritrócitos/patologiaRESUMO
We present a straightforward procedure to prepare composite photoanodes which consisted of TiO2 rutile nanorods/anatase nanoparticles synthesized under hydrothermal conditions, with the ratio of rutile to anatase controlled simply by adjusting the volume of nitric acid. The as-prepared TiO2 composites exhibited high specific surface area, light-scattering effect, and good crystallinity. The dye-sensitized solar cells (DSCs) using the TiO2 composites showed higher short-circuit photocurrent and overall conversion efficiency than the DSC from pure-anatase nanoparticles. The highest conversion efficiency was achieved from the DSC based on TiO2 nanocomposites with 24 wt% rutile nanorods, which was attributed to improved light harvesting caused by the enhancement of specific surface area and scattering effect from rutile nanorods.
RESUMO
The effects of additives on the quasi-Fermi levels (QFL) of TiO(2) films in dye-sensitized solar cells (DSCs) were investigated by a direct method. We observed that the values of QFL of TiO(2) at short circuit and open circuit are different and found for the first time the linear relationships between QFL shifts at short circuit and open circuit induced by 4-tert-butylpyridine (TBP), and that the slopes of the lines were significantly influenced by the nature of cations in the electrolyte. Different QFL shifts at short circuit and open circuit were observed in the presence of TBA(+). These quantitative results suggest that the QFL of TiO(2) films at short circuit and open circuit can be adjusted separately by developing suitable additives and cations, which will be helpful to further improve the efficiency of DSCs.
RESUMO
Identification and profiling of molecular fragments generated over the lifespan of halide perovskite solar cells are needed to overcome the stability issues associated with these devices. Herein, we report the characterization of buried CH3NH3PbI3-xClx (HaP)-transport layer (TL) interfaces. By using hard X-ray photoelectron spectroscopy in conjunction with transmission electron microscopy, we reveal that the chemical decomposition of HaP is TL-dependent. With NiO1-δ, phenyl-C61-butyric acid methyl ester (PCBM), or poly(bis(4-phenyl) (2,4,6-trimethylphenyl)amine) (PTAA) as TLs, probing depth analysis shows that the degradation takes place at the interface (HaP/TL) rather than the HaP bulk area. From core-level data analysis, we identified iodine migration toward the PCBM- and PTAA-TLs. Unexpected diffusion of nitrogen inside NiO1-δ-TL was also found for the HaP/NiO1-δ sample. With a HaP/PCBM junction, HaP is dissociated to PbI2, whereas HaP/PTAA contact favored the formation of CH3I. The low stability of HaP solar cells in the PTAA-TL system is attributed to the formation of CH3I and iodide ion vacancies. Improved stability observed with NiO1-δ-TL is related to weak dissociation of stoichiometric HaP. Here, we provide a new insight to further distinguish different mechanisms of degradation to improve the long-term stability and performance of HaP solar cells.
RESUMO
In this work, the effect of carbon dots (C-dots) on the performance of NiO-based dye-sensitized solar cells (DSSCs) was explored. NiO nanoparticles (NPs) with a rectangular shape (average size: 11.4 × 16.5 nm2) were mixed with C-dots, which were synthesized from citric acid (CA) and ethylenediamine (EDA). A photocathode consisting of a composite of C-dots with NiO NPs (NiO@C-dots) was then used to measure the photovoltaic performance of a DSSC. A power conversion efficiency (PCE) of 9.85% (430 nm LED@50 mW/cm2) was achieved by a DSSC fabricated via the adsorption of N719 sensitizer with a C-dot content of 12.5 wt % at a 1.5:1 EDA/CA molar ratio. This PCE value was far larger than the PCE value (2.44 or 0.152%) obtained for a NiO DSSC prepared without the addition of C-dots or N719, respectively, indicating the synergetic effect by the co-adsorption of C-dots and N719. This synergetically higher PCE of the NiO@C-dot-based DSSC was due to the larger amount of sensitizer adsorbed onto the composites with a larger specific surface area and the faster charge transfer in the NiO@C-dot working electrode. In addition, the C-dots bound to the NiO NPs shorten the band gap of the NiO NPs due to energy transfer and give rise to faster charge separation in the electrode. The most important fact is that C-dots are the main sensitizer, while N719 tightly adsorbs on C-dots and NiO behaves as an accelerator of a positive electron transfer and a restrainer of the electron-hole recombination. These results reveal that C-dots are a remarkable enhancer for NiO NPs in DSSCs and that NiO@C-dots are promising photovoltaic electrode materials for DSSCs.
RESUMO
Circulating tumor cells (CTCs) invade blood vessels in solid tumors and promote metastases by circulating in the blood. CTCs are thus recognized as targets for liquid biopsy and can provide useful information for design of treatments. This diagnostic approach must consider not only the number of CTCs but also their molecular and genetic characteristics. For this purpose, use of devices that enrich CTCs independent of these characteristics and detectors that recognize various CTC characteristics is essential. In the present study, we developed a CTC detection system comprising ClearCell FX and ImageStream Mark II. We clarified the analytical performance of this system by evaluating recovery rate, lower limits of detection, and linearity. These parameters are critical for detecting rare cells, such as CTCs. We tested these parameters using three cell lines with different expression levels of the epithelial marker-epithelial cell adhesion molecule (EpCAM) and spiked these cells into whole-blood samples from healthy donors. The average recovery rate and lower limit of detection were approximately 40% and five cells/7.5 mL of whole blood, respectively. High linearity was observed for all evaluated samples. We also evaluated the ability of the system to distinguish between normal and abnormal cells based on protein expression levels and gene amplification and found that the system can identify abnormal cells using these characteristics. The CTC detection system thus displays the ability to distinguish specific characteristics of CTC, thereby providing valuable information for cancer treatment.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Tumorais CultivadasRESUMO
The carrier transport layers (CTLs) have exhibited the influence on performance and stability of halide perovskite solar cells (HaPSCs). The exploration of characteristic impacts on HaPSCs induced by the CTL unveils the key factors underlying the device physics. In this work, we investigate the impacts of the organic or inorganic hole transport layer (HTL) in HaPSCs by analyzing the elemental distribution, the current-voltage characteristics, and the capacitance spectroscopy. The organic HTL device shows the lower activation energy ( EA < Eg) indicating a dominant interface-mediated recombination. The defect analysis reveals that the device with the inorganic HTL induces rather deep antisite defects with slightly higher trap densities. This is attributed to the diffusion of metal cations into the halide perovskite (HaP) during crystallization of HaP layer grown on the inorganic HTLs. Our results suggest that the passivation of deep defect and suppression of trap densities in the HaP either using ideal CTLs or optimizing the fabrication route is crucial to improving the device parameters approaching the theoretical limit.