Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934726

RESUMO

Adaptive dynamical networks are network systems in which the structure co-evolves and interacts with the dynamical state of the nodes. We study an adaptive dynamical network in which the structure changes on a slower time scale relative to the fast dynamics of the nodes. We identify a phenomenon we refer to as recurrent adaptive chaotic clustering (RACC), in which chaos is observed on a slow time scale, while the fast time scale exhibits regular dynamics. Such slow chaos is further characterized by long (relative to the fast time scale) regimes of frequency clusters or frequency-synchronized dynamics, interrupted by fast jumps between these regimes. We also determine parameter values where the time intervals between jumps are chaotic and show that such a state is robust to changes in parameters and initial conditions.

2.
Phys Rev Lett ; 130(6): 067402, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827552

RESUMO

Phase transitions in equilibrium and nonequilibrium systems play a major role in the natural sciences. In dynamical networks, phase transitions organize qualitative changes in the collective behavior of coupled dynamical units. Adaptive dynamical networks feature a connectivity structure that changes over time, coevolving with the nodes' dynamical state. In this Letter, we show the emergence of two distinct first-order nonequilibrium phase transitions in a finite-size adaptive network of heterogeneous phase oscillators. Depending on the nature of defects in the internal frequency distribution, we observe either an abrupt single-step transition to full synchronization or a more gradual multistep transition. This observation has a striking resemblance to heterogeneous nucleation. We develop a mean-field approach to study the interplay between adaptivity and nodal heterogeneity and describe the dynamics of multicluster states and their role in determining the character of the phase transition. Our work provides a theoretical framework for studying the interplay between adaptivity and nodal heterogeneity.

3.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060801

RESUMO

Extreme multistability (EM) is characterized by the emergence of infinitely many coexisting attractors or continuous families of stable states in dynamical systems. EM implies complex and hardly predictable asymptotic dynamical behavior. We analyze a model for pendulum clocks coupled by springs and suspended on an oscillating base and show how EM can be induced in this system by specifically designed coupling. First, we uncover that symmetric coupling can increase the dynamical complexity. In particular, the coexistence of multiple isolated attractors and continuous families of stable periodic states is generated in a symmetric cross-coupling scheme of four pendulums. These coexisting infinitely many states are characterized by different levels of phase synchronization between the pendulums, including anti-phase and in-phase states. Some of the states are characterized by splitting of the pendulums into groups with silent sub-threshold and oscillating behavior, respectively. The analysis of the basins of attraction further reveals the complex dependence of EM on initial conditions.

4.
Chaos ; 33(2): 023123, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859232

RESUMO

Rhythmic activities that alternate between coherent and incoherent phases are ubiquitous in chemical, ecological, climate, or neural systems. Despite their importance, general mechanisms for their emergence are little understood. In order to fill this gap, we present a framework for describing the emergence of recurrent synchronization in complex networks with adaptive interactions. This phenomenon is manifested at the macroscopic level by temporal episodes of coherent and incoherent dynamics that alternate recurrently. At the same time, the dynamics of the individual nodes do not change qualitatively. We identify asymmetric adaptation rules and temporal separation between the adaptation and the dynamics of individual nodes as key features for the emergence of recurrent synchronization. Our results suggest that asymmetric adaptation might be a fundamental ingredient for recurrent synchronization phenomena as seen in pattern generators, e.g., in neuronal systems.

5.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060774

RESUMO

We study the slow-fast dynamics of a system with a double-Hopf bifurcation and a slowly varying parameter. The model consists of coupled Bonhöffer-van der Pol oscillators excited by a periodic slow-varying AC source. We consider two cases where the slowly varying parameter passes by or crosses the double-Hopf bifurcation, respectively. Due to the system's multistability, two bursting solutions are observed in each case: single-mode bursting and two-mode bursting. Further investigation reveals that the double-Hopf bifurcation causes a stable coexistence of these two bursting solutions. The mechanism of such coexistence is explained using the slowly changing phase portraits of the fast subsystem. We also show the robustness of the observed effect in the vicinity of the double-Hopf bifurcation.

6.
Chaos ; 33(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486668

RESUMO

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

7.
Phys Rev Lett ; 126(2): 028301, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512200

RESUMO

Adaptive networks change their connectivity with time, depending on their dynamical state. While synchronization in structurally static networks has been studied extensively, this problem is much more challenging for adaptive networks. In this Letter, we develop the master stability approach for a large class of adaptive networks. This approach allows for reducing the synchronization problem for adaptive networks to a low-dimensional system, by decoupling topological and dynamical properties. We show how the interplay between adaptivity and network structure gives rise to the formation of stability islands. Moreover, we report a desynchronization transition and the emergence of complex partial synchronization patterns induced by an increasing overall coupling strength. We illustrate our findings using adaptive networks of coupled phase oscillators and FitzHugh-Nagumo neurons with synaptic plasticity.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Biofísica , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
8.
Chaos ; 31(7): 073128, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340340

RESUMO

Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.

9.
Chaos ; 30(8): 083109, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32872843

RESUMO

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

10.
Chaos ; 30(9): 093124, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33003948

RESUMO

The deep time-delay reservoir computing concept utilizes unidirectionally connected systems with time-delays for supervised learning. We present how the dynamical properties of a deep Ikeda-based reservoir are related to its memory capacity (MC) and how that can be used for optimization. In particular, we analyze bifurcations of the corresponding autonomous system and compute conditional Lyapunov exponents, which measure generalized synchronization between the input and the layer dynamics. We show how the MC is related to the systems' distance to bifurcations or magnitude of the conditional Lyapunov exponent. The interplay of different dynamical regimes leads to an adjustable distribution between the linear and nonlinear MC. Furthermore, numerical simulations show resonances between the clock cycle and delays of the layers in all degrees of MC. Contrary to MC losses in single-layer reservoirs, these resonances can boost separate degrees of MC and can be used, e.g., to design a system with maximum linear MC. Accordingly, we present two configurations that empower either high nonlinear MC or long time linear MC.

11.
Phys Rev Lett ; 123(5): 053901, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491298

RESUMO

Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, autosolitons, and spot or pulse solutions, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudocontinuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh-Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudocontinuous spectrum develops a modulational instability.

12.
Philos Trans A Math Phys Eng Sci ; 377(2153): 20180118, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329072

RESUMO

We consider the two-component delay system εx'(t) = - x(t) - y(t) + f(x(t - 1)), y'(t) = ηx(t) with small para- meters ε, η and positive feedback function f. Previously, such systems have been reported to model switching in optoelectronic experiments, where each switching induces another one after approximately one delay time, related to one round trip of the signal. In this paper, we study these delay-induced switched states. We provide conditions for their existence and show how the formal limits ε → 0 and/or η → 0 facilitate our understanding of this phenomenon. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

13.
J Math Biol ; 79(1): 249-279, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31037349

RESUMO

Infectious diseases are among the most prominent threats to mankind. When preventive health care cannot be provided, a viable means of disease control is the isolation of individuals who may be infected. To study the impact of isolation, we propose a system of delay differential equations and offer our model analysis based on the geometric theory of semi-flows. Calibrating the response to an outbreak in terms of the fraction of infectious individuals isolated and the speed with which this is done, we deduce the minimum response required to curb an incipient outbreak, and predict the ensuing endemic state should the infection continue to spread.


Assuntos
Doenças Transmissíveis/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Epidemias/prevenção & controle , Modelos Biológicos , Isolamento de Pacientes , Doenças Transmissíveis/transmissão , Simulação por Computador , Humanos
14.
Chaos ; 29(10): 103134, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31675820

RESUMO

Adaptive dynamical networks appear in various real-word systems. One of the simplest phenomenological models for investigating basic properties of adaptive networks is the system of coupled phase oscillators with adaptive couplings. In this paper, we investigate the dynamics of this system. We extend recent results on the appearance of hierarchical frequency multiclusters by investigating the effect of the time scale separation. We show that the slow adaptation in comparison with the fast phase dynamics is necessary for the emergence of the multiclusters and their stability. Additionally, we study the role of double antipodal clusters, which appear to be unstable for all considered parameter values. We show that such states can be observed for a relatively long time, i.e., they are metastable. A geometrical explanation for such an effect is based on the emergence of a heteroclinic orbit.

15.
Chaos ; 27(11): 114313, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195313

RESUMO

We investigate the dynamic mechanisms for low frequency fluctuations in semiconductor lasers subjected to delayed optical feedback, using the Lang-Kobayashi model. This system of delay differential equations displays pronounced envelope dynamics, ranging from erratic, so called low frequency fluctuations to regular pulse packages, if the time scales of fast oscillations and envelope dynamics are well separated. We investigate the parameter regions where low frequency fluctuations occur and compute their Lyapunov spectra. Using the geometric singular perturbation theory, we study this intermittent chaotic behavior and characterize these solutions as bursting slow-fast oscillations.

16.
Chaos ; 27(1): 013114, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147507

RESUMO

We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.

17.
Chaos ; 27(11): 114201, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195312

RESUMO

The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

18.
Phys Rev Lett ; 114(17): 178103, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978268

RESUMO

Oscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in recent years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. At the bifurcation point numerous regimes with nonequal interspike intervals emerge. We show that the number of the emerging, so-called "jittering" regimes grows exponentially with the delay value. Although this appears as highly degenerate from a dynamical systems viewpoint, the "multijitter" bifurcation occurs robustly in a large class of systems. We observe it not only in a paradigmatic phase-reduced model, but also in a simulated Hodgkin-Huxley neuron model and in an experiment with an electronic circuit.


Assuntos
Relógios Biológicos , Modelos Teóricos , Retroalimentação , Modelos Neurológicos , Neurônios/fisiologia
19.
Phys Rev Lett ; 112(17): 174103, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836250

RESUMO

Dynamical systems with complex delayed interactions arise commonly when propagation times are significant, yielding complicated oscillatory instabilities. In this Letter, we introduce a class of systems with multiple, hierarchically long time delays, and using a suitable space-time representation we uncover features otherwise hidden in their temporal dynamics. The behavior in the case of two delays is shown to "encode" two-dimensional spiral defects and defects turbulence. A multiple scale analysis sets the equivalence to a complex Ginzburg-Landau equation, and a novel criterium for the attainment of the long-delay regime is introduced. We also demonstrate this phenomenon for a semiconductor laser with two delayed optical feedbacks.

20.
Sci Rep ; 14(1): 5713, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459077

RESUMO

Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain's network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Humanos , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Estudos de Viabilidade , Encéfalo/diagnóstico por imagem , Memória de Curto Prazo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA