Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005653

RESUMO

The energy harvesters used in self-powered wireless sensing technology, which has the potential to completely solve the power supply problem of the sensing nodes from the source, usually require mechanical movement or operate in harsh environments, resulting in a significant reduction in device lifespan and reliability. Therefore, the influencing factors and failure mechanisms of the operating status of self-powered wireless sensors were analyzed, and an innovative evaluation index system was proposed, which includes 4 primary indexes and 13 secondary indexes, including energy harvesters, energy management circuits, wireless communication units, and sensors. Next, the weights obtained from the subjective analytic hierarchy process (AHP) and objective CRITIC weight method were fused to obtain the weights of each index. A self-powered sensor evaluation scheme (FE-SPS) based on fuzzy comprehensive evaluation was implemented by constructing a fuzzy evaluation model. The advantage of this scheme is that it can determine the current health status of the system based on its output characteristics. Finally, taking vibration energy as an example, the operational status of the self-powered wireless sensors after 200 h of operation was comprehensively evaluated. The experimental results show that the test self-powered wireless sensor had the highest score of "normal", which is 0.4847, so the evaluation result was "normal". In this article, a reliability evaluation strategy for self-powered wireless sensor was constructed to ensure the reliable operation of self-powered wireless sensors.

2.
Rev Sci Instrum ; 93(3): 031502, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364975

RESUMO

Wireless sensor networks play a very important role in environmental monitoring, structural health monitoring, smart city construction, smart grid, and ecological agriculture. The wireless sensor nodes powered by a battery have a limited service life and need periodic maintenance due to the limitation of battery capacity. Fortunately, the development of environmental energy harvesting technology provides an effective way to eliminate the needs and the replacement of the batteries. Among the environmental stray energy, wind energy is rich, almost endless, widely distributed, and clean. Due to the advantages of simple structure, miniaturization, and high power density, wind energy harvesters using piezoelectric materials (PWEHs) have attracted much attention. By the ways of principal exploration, structure design, and performance optimization, great and steady progress has been made in the research of PWEH. This Review is focused on the review of PWEHs. After introducing the basic principle of PWEHs, the structural performance and research status of PWEHs based on different mechanisms, such as a rotating turbine, vortex-induced vibration, flutter, and galloping, are analyzed and summarized. Finally, the development trend of PWEHs has been prospected.

3.
Materials (Basel) ; 13(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580483

RESUMO

This paper analyzes the dynamic magneto-mechanical response in magnetization-graded ferromagnetic materials (MGFM) comprised of high-permeability Finemet and traditional magnetostrictive materials. The theoretical modeling of the piezomagnetic coefficient that depends on the bias magnetic field of MGFM is proposed by using the nonlinear constitutive model of a piezomagnetic material, the magnetoelectric equivalent circuit method, and the simulation software Ansoft. The theoretical variation of piezomagnetic coefficients of MGFM on the bias magnetic field is in good agreement with the experiment. Using the piezomagnetic coefficient in the magnetoelectric voltage model, the theoretical longitudinal resonant magnetoelectric voltage coefficients have also been calculated, which are consistent with the experimental values. This theoretical analysis is beneficial to comprehensively understand the self-biased piezomagnetic response of MGFM, and to design magnetoelectric devices with MGFM.

4.
Micromachines (Basel) ; 10(6)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234603

RESUMO

This paper presents a shear-mode piezoelectric current sensing device for two-wire power cords in electric power grids. The piezoelectric heterostructure consists of a cymbal structure and a permalloy plate. The cymbal structure is constructed from a permanent magnet, a brass cap, and shear-mode piezoelectric materials. The permalloy plate concentrates the magnetic field generated by the two-wire power cord on the magnet. Under the force amplification effect of the cymbal structure, the response of the device is improved. A prototype has been fabricated to conduct the experiments. The experimental average sensitivity of the device is 12.74 mV/A in the current range of 1-10 A with a separating distance of d = 0 mm, and the resolution reaches 0.04 A. The accuracy is calculated to be ±0.0177 mV at 1.5 A according to the experimental voltage distribution. The current-to-voltage results demonstrate that the proposed heterostructure can also be used as a magnetoelectric device without bias.

5.
Rev Sci Instrum ; 90(9): 096103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575244

RESUMO

This paper presents a sensitive current sensor based on magnetoelectric composite Fe73.5Cu1Nb3Si13.5B9/Pb(Zr,Ti)O3 with a tunable magnetic concentrator. The concentrator with a movable magnetic plate can enable the DC bias magnetic field (Hdc) to become tunable to meet the needed optimal Hdc of Fe73.5Cu1Nb3Si13.5B9/Pb(Zr,Ti)O3 and to reduce the magnetoresistance of the magnetic loop. Furthermore, the sensor's resonant frequency is adjustable to improve the sensitivity for measuring current at different frequencies. From experiments, the proposed sensor has a sensitivity of ∼246.71 mV/A and a linearity of ∼0.98% at 50 Hz current. The results indicate that the proposed current sensor is ideally suited for current-monitoring.

6.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491948

RESUMO

In this paper, we report the nonlinear magnetoelectric response in a homogenous magnetostrictive/piezoelectric laminate material. The proposed magnetoelectric stack Fe73.5Cu1Nb3Si13.5B9/piezofiber is made up of high-permeability magnetostrictive Fe73.5Cu1Nb3Si13.5B9 foils and a piezoelectric Pb(Zr, Ti)O3 fiber composite. The time dependence of magnetoelectric interactions in the Fe73.5Cu1Nb3Si13.5B9/piezofiber structure driven by pulsed magnetic field was investigated in detail. The experimental results show that the magnetoelectric effect is strongly dependent on the external bias magnetic and pulsed magnetic field parameters. To detect the amplitude of a pulsed magnetic field, the output sensitivity reaches 17 mV/Oe, which is excited by a 100 µs width field. In addition, to measure the pulsed width, the output sensitivity reaches 5.4 mV/µs in the range of 0-300 µs. The results show that the proposed Fe73.5Cu1Nb3Si13.5B9/piezofiber sensor is ideally suited for pulsed magnetic field measurement.

7.
Rev Sci Instrum ; 86(6): 066102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26133877

RESUMO

A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.

8.
Rev Sci Instrum ; 85(2): 026110, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593410

RESUMO

An electric current sensor using piezoelectric ceramic Pb(Zr,Ti)O3 (PZT) sandwiched between two high permeability cuboids and two NdFeB magnets is presented. The magnetic field originating from an electric wire is augmented by the high permeability cuboids. The PZT plate experiences an enhanced magnetic force and generates voltage output. When placed with a distance of d = 5.0 mm from the wire, the sensor shows a flat sensitivity of ∼5.7 mV/A in the frequency range of 30 Hz-80 Hz and an average sensitivity of 5.6 mV/A with highly linear behavior in the current range of 1 A-10 A at 50 Hz.

9.
Rev Sci Instrum ; 85(3): 033904, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689597

RESUMO

An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (µ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

10.
Rev Sci Instrum ; 85(6): 066103, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985867

RESUMO

A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 µW cm(-3) volume power density at 170-206 Hz.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24081260

RESUMO

In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

12.
Rev Sci Instrum ; 84(10): 105004, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182155

RESUMO

This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 µW across a 196 kΩ resistor is generated from a single wire, and a power of 897 µW across a 212 kΩ resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems.

13.
Rev Sci Instrum ; 83(11): 115001, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206090

RESUMO

A self-powered current sensor consisting of the magnetostrictive/piezoelectric laminate composite and the high-permeability nanocrystalline alloys is presented. The induced vortex magnetic flux is concentrated and amplified by using an optimized-shape nanocrystalline alloy of FeCuNbSiB into the magnetoelectric laminate composite; this optimization allows improving the sensitivity significantly as well as increasing the saturation of the current sensor. The main advantages of this current sensor are its large dynamic range and ability to measure currents accurately. An analytical expression for the relationship between current and voltage is derived by using the magnetic circuit principle, which predicts the measured sensitivity well. The experimental results exhibit an approximately linear relationship between the electric current and the induced voltage. The dynamic range of this sensor is from 0.01 A to 150 A, and a small electric current step-change of 0.01 A can be clearly distinguished at the power-line frequency of 50 Hz. We demonstrate that the current sensor has a flat operational frequency in the range of 1 Hz-20 kHz relative to a conventional induction coil. The current sensor indicates great potentials for monitoring conditions of electrical facilities in practical applications due to the large dynamic range, linear sensitivity, wide bandwidth frequency response, and good time stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA