RESUMO
As a protein kinase inhibitor, cantharidin (CTD) exhibits antitumor activities. However, CTD is highly toxic, thereby limiting clinical applications. Moreover, relatively few studies have investigated CTD-induced reproductive toxicity, thus the underlying mechanism remains unclear. In this study, the toxic effects of CTD on mouse testis were confirmed in vivo and the potential mechanism was predicted by network toxicology (NT) and molecular docking technology. Proteins involved in the signaling pathways and core targets were verified. The results showed that different concentrations of CTD induced weight loss increased the testicular coefficient, and caused obvious pathological damage to testicular cells. The NT results showed that the main targets of CTD-induced testicular injury (TI) included AKT1, Caspase 3, Bcl-2, and Bax. The results of pathway enrichment analysis showed that CTD-induced TI was closely related to apoptosis and the PI3K/AKT and HIF-1 signaling pathways. Molecular docking methods confirmed high affinity between CTD and key targets. Western blot analysis showed that CTD inhibited expression of PI3K, AKT, and the anti-apoptotic protein Bcl-2, while promoting expression of the pro-apoptotic proteins Bax and Caspase 3. These results suggest that CTD-induced TI involves multiple targets and pathways, and the underlying mechanism was associated with inhibition of the apoptosis-related PI3K/AKT signaling pathway.
Assuntos
Cantaridina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Testículo , Animais , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Cantaridina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
BACKGROUND: Leaf size affects crop canopy morphology and photosynthetic efficiency, which can influence forage yield and quality. It is of great significance to mine the key genes controlling leaf development for breeding new alfalfa varieties. In this study, we mapped leaf length (LL), leaf width (LW), and leaf area (LA) in an F1 mapping population derived from a cultivar named ZhongmuNo.1 with larger leaf area and a landrace named Cangzhou with smaller leaf area. RESULTS: This study showed that the larger LW was more conducive to increasing LA. A total of 24 significant quantitative trait loci (QTL) associated with leaf size were identified on both the paternal and maternal linkage maps. Among them, nine QTL explained about 11.50-22.45% phenotypic variation. RNA-seq analysis identified 2,443 leaf-specific genes and 3,770 differentially expressed genes. Combining QTL mapping, RNA-seq alalysis, and qRT-PCR, we identified seven candidate genes associated with leaf development in five major QTL regions. CONCLUSION: Our study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of leaf development in alfalfa.
Assuntos
Medicago sativa , Locos de Características Quantitativas , Medicago sativa/genética , Melhoramento Vegetal , Folhas de Planta/genética , Locos de Características Quantitativas/genética , RNA-SeqRESUMO
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Assuntos
Cantaridina , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Cantaridina/toxicidade , Cantaridina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Autofagia , Polissacarídeos/farmacologia , Polissacarídeos/metabolismoRESUMO
Background: Smilax glabra Roxb. (named tufuling in Chinese, SGR) has both medicinal and edible value. SGR has obvious pharmacological activity, especially in anti-inflammation and treating immune system diseases. This study investigated differential protein expression and its relationship with immune infiltration in hypertension treated with SGR using proteomics and bioinformatics. Methods: N-Nitro L-arginine methyl ester (L-NAME) was used to replicate the hypertension model, with SGR administered by gavage for 4 weeks, and the systolic and diastolic blood pressure in each group of rats was measured using the tail-cuff method every 7 days. Furthermore, enzyme-linked immunosorbent assay (ELISA) was used to determine the serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) expressions in each group, followed by the detection of protein expression in rat liver samples using the tandem mass tag (TMT) technique. Additionally, hub targets were output using Cytoscape 3.9.1 software, and ALDH2 expression in the liver and serum in each group of rats was detected by ELISA. Moreover, R4.3.0 software was used to evaluate the relationship between acetaldehyde dehydrogenase 2 (ALDH2) and immune cells, and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the components of SGR. Furthermore, the association between components of SGR and ALDH2 was analyzed with molecular docking and LigPlot1.4.5 software. Results: Compared with the model group (L-NAME), SGR at high and medium doses reduced systolic and diastolic blood pressure while reducing TC, TG, and LDL-C levels and increasing HDL-C levels in hypertensive rats (p < 0.05). Moreover, 92 differentially expressed proteins (DEPs) were identified using TMT. These DEPs participated in peroxisome functioning, fatty acid degradation, and other signaling pathways, with ALDH2 being the core target and correlated with various immune cells. In addition, 18 components were determined in SGR, with 8 compounds binding to ALDH2. Molecular docking was performed to confirm that SGR played a role in hypertension based on the combined action of multiple components. Conclusion: In conclusion, SGR has an antihypertensive effect on L-NAME-induced hypertension, with ALDH2 as its hub target. SGR may regulate neutrophil, regulatory T cell, and other cells' infiltration by targeting ALDH2, thereby contributing to the treatment of hypertension.
RESUMO
OBJECTIVES: Tuberostemonine has several biological activity, the aim of study examined the impact of tuberostemonine on the proliferation of TGF-ß1 induced cell model, and its ability to alleviate pulmonary fibrosis stimulated by bleomycin in mice. METHODS: In vitro, we assessed the effect of tuberostemonine (350, 550 and 750 µM) on the proliferation of cells stimulated by TGF-ß1 (10 µg/L), as well as on parameters such as α-SMA vitality, human fibronectin, collagen, and hydroxyproline levels in cells. In vivo, we analyzed inflammation, hydroxyproline, collagen activity and metabolomics in the lungs of mice. Additionally, a comprehensive investigation into the TGF-ß/smad signaling pathway was undertaken, targeting lung tissue as well as HFL cells. RESULTS: Within the confines of an in vitro setup, the tuberostemonine manifested a discerned IC50 of 1.9 mM. Furthermore, a significant reduction of over fifty percent was ascertained in the secretion levels of hydroxyproline, fibronectin, collagen type I, collagen type III and α-SMA. In vivo, tuberostemonine obviously improved the respiratory function percentage over 50% of animal model and decreased the hydroxyproline, lung inflammation and collagen deposition. A prominent decline in TGF-ß/smad pathway functioning was identified within both the internal and external cellular contexts. CONCLUSIONS: Tuberostemonine is considered as a modulator to alleviate fibrosis and may become a new renovation for pulmonary fibrosis.
Assuntos
Bleomicina , Proliferação de Células , Fibroblastos , Pulmão , Fibrose Pulmonar , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Animais , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Hidroxiprolina/metabolismo , Proteínas Smad/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Actinas/metabolismoRESUMO
Our previous studies have shown the therapeutic efficacy of brucine dissolving-microneedles (Bru-DMNs) in treating rheumatoid arthritis (RA). Bru delivered via the DMNs can bypass some of the issues related to oral and systemic delivery, including extensive enzymatic activity, liver metabolism and in the case of systemic delivery via hypodermic needles, pain resulting from injections and needle stick injury. However, the underlying mechanism of Bru-DMNs against RA has not been investigated in depth at the pharmacokinetic-pharmacodynamic (PK-PD) level. In this study, a microdialysis-based method combined with ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous and continuous sampling and quantitative analysis of blood and joint cavities in fully awake RA rats. The acquired data were analyzed by the PK-PD analysis method. Bru delivered via microneedles showed enhanced distribution and prolonged retention in the joint cavity compared to its administration in blood. The correlation between the effect of Bru and its concentration at the action site was indirect. In this study, we explored the mechanism of Bru-DMNs against RA and established a visualization method to express the PK-PD relationship of Bru-DMNs against RA. This study provides insights into the mechanism of action of drugs with potential side effects administered transdermally for RA treatment.
RESUMO
BACKGROUND: Epstein-Barr virus (EBV) is an etiological cause of many human lymphocytic and epithelial malignancies. EBV expresses different genes that are associated with three latency types. To date, as many as 44 EBV-encoded miRNA species have been found, but their comprehensive profiles in the three types of latent infection that are associated with various types of tumors are not well documented. METHODS: In the present study, we utilized poly (A)-tailed quantitative real-time RT-PCR in combination with microarray analysis to measure the relative abundances of viral miRNA species in a subset of representative lymphoid and epithelial tumor cells with various EBV latency types. RESULTS: Our findings showed that the miR-BHRF1 and miR-BART families were expressed differentially in a tissue- and latency type-dependent manner. Specifically, in nasopharyngeal carcinoma (NPC) tissues and the EBV-positive cell line C666-1, the miR-BART family accounted for more than 10% of all detected miRNAs, suggesting that these miRNAs have important roles in maintaining latent EBV infections and in driving NPC tumorigenesis. In addition, EBV miRNA-based clustering analysis clearly distinguished between the three distinct EBV latency types, and our results suggested that a switch from type I to type III latency might occur in the Daudi BL cell line. CONCLUSIONS: Our data provide a comprehensive profiling of the EBV miRNA transcriptome that is associated with specific tumor cells in the three types of latent EBV infection states. EBV miRNA species represent a cluster of non-encoding latency biomarkers that are differentially expressed in tumor cells and may help to distinguish between the different latency types.
Assuntos
Perfilação da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , MicroRNAs/genética , RNA Viral/genética , Latência Viral , Biópsia , Células Cultivadas , Humanos , Leucemia Linfoide/virologia , MicroRNAs/biossíntese , Análise em Microsséries , Neoplasias Epiteliais e Glandulares/virologia , RNA Viral/biossíntese , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Lipid remodeling regulators are now being investigated as potential therapeutic targets for cancer therapy as a result of their involvement, which includes promoting cancer cells' adaptation to the restricted environment. Lysophosphatidylcholine acyltransferases (LPCATs, LPCAT1-4) are enzymes that regulate the remodeling of bio-membranes. The functions of these enzymes in cancer are largely unknown. In the current study, we found that genes belonging to the LPCAT family participated in tumor advancement and were strongly linked to dismal prognosis in many different malignancies. We constructed the LPCATs scores model and explored this model in pan-cancer. Malignant pathways in pan-cancer were positively related to LPCATs scores, and all pathways had strong links to the tumor microenvironment (TME). Multiple immune-associated features of the TME in pan-cancer were likewise associated with higher LPCATs scores. In addition, the LPCATs score functioned as a prognostic marker for immune checkpoint inhibitor (ICI) therapies in patients with cancer. LPCAT4 enhanced cell growth and cholesterol biosynthesis by up-regulating ACSL3 in hepatocellular carcinoma (HCC). WNT/ß-catenin/c-JUN signaling pathway mediated LPCAT4's regulation on ACSL3. These findings demonstrated that genes in the LPCAT family might be used as cancer immunotherapy and prognosis-related biomarkers. Specifically, LPCAT4 could be a treatment target of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Prognóstico , Cateninas , Biomarcadores , Microambiente Tumoral/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genéticaRESUMO
Pathological epithelialmesenchymal transition (EMT) has been shown to fulfill a key role in the development and progression of a variety of lung diseases. It has been demonstrated that the inflammatory microenvironment is a decisive factor in inducing pathological EMT. Hexacylated lipopolysaccharide (LPS) [or proacylated lipopolysaccharide (PLPS), which functions as proinflammatory lipopolysaccharide] is one of the most effective Tolllike receptor 4 (TLR4) agonists. Furthermore, the pentacylated and tetracylated form of lipopolysaccharide (or ALPS, which functions as antiinflammatory lipopolysaccharide) has been shown to elicit competitive antagonistic effects against the proinflammatory activity of PLPS. At present, it remains unclear whether LPS extracted from Bacteroides vulgatus (BVLPS) can prevent LPS extracted from Escherichia coli (ECLPS) from inducing pathological EMT. In the present study, A549 cells and C57BL/6 mice lung tissue were both induced by ECLPS (PLPS) and BVLPS (ALPS), either alone or in combination. The anticipated antiinflammatory effects of BVLPS were analyzed by examining the lung coefficient, lung pathology, A549 cell morphology and expression levels both of the inflammatory cytokines, IL1ß, IL6 and TNFα and of the EMT signature proteins, epithelial cadherin (Ecadherin), αsmooth muscle actin (αSMA) and vimentin. In addition, the expression levels of TLR4, bone morphogenic protein and activin membranebound inhibitor (BAMBI) and Snail were detected and the possible mechanism underlying how BVLPS may prevent ECLPSinduced EMT was analyzed. The results obtained showed that the morphology of the A549 cells was significantly polarized, the lung index was significantly increased, the alveolar structure was collapsed and the expression levels of IL1ß, IL6, TNFα, αSMA, vimentin, TLR4 and Snail in both lung tissue and A549 cells were significantly increased, whereas those of Ecadherin and BAMBI were significantly decreased. Treatment with BVLPS in combination with ECLPS was found to reverse these changes. In conclusion, the present study demonstrated that BVLPS is able to effectively prevent ECLPSinduced EMT in A549 cells and in mouse lung tissue and furthermore, the underlying mechanism may be associated with inhibition of the TLR4/BAMBI/Snail signaling pathway.
Assuntos
Bacteroides , Transição Epitelial-Mesenquimal , Escherichia coli , Lipopolissacarídeos , Pulmão , Lipopolissacarídeos/química , Escherichia coli/química , Escherichia coli/fisiologia , Bacteroides/química , Bacteroides/fisiologia , Acilação , Inflamação , Células A549 , Pulmão/patologia , Transdução de Sinais , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Plastics in landfills undergo a unique micronization process due to multi-factor and light-avoided conditions, but their aging process in such a typical environment remains unexplored. This study investigated the aging behavior of polyethylene plastics, representative of landfills, under simulated dynamic mechanical forces and high temperature-two prevalent environmental factors in landfills. The study explored the individual and combined contributions of these factors to the aging process. Results indicated that high temperature played a primary role in aging plastics by depolymerization and degradation through ·OH production, while mechanical forces contributed mainly to surface structure breakdown. The combined effect leads to more serious surface damage, creating holes, cracks, and scratches that provide access for free radical reactions to plastic bulk, thereby accelerating the aging and micronization process. The resulting microplastics were found to be 14.25 ± 0.53 µg L-1. Aged plastics exhibit a rapid aging rate of depolymerization and oxidation compared to virgin plastics due to their weak properties, suggesting a higher potential risk of microplastic generation. This study fills a knowledge gap regarding the aging behavior of plastics under complex and light-avoided landfill conditions, emphasizing the need for increased attention to the evolution process of microplastics from aged plastic waste in landfills.
Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Plásticos/química , Microplásticos , Instalações de Eliminação de ResíduosRESUMO
Background: Hepatocellular carcinoma (HCC) continues to increase in morbidity and mortality among all types of cancer. DNA methylation, an important epigenetic modification, is associated with cancer occurrence and progression. The objective of this study was to establish a model based on DNA methylation risk scores for identifying new potential therapeutic targets in HCC and preventing cancer progression. Methods: Transcriptomic, clinical, and DNA methylation data on 374 tumor tissues and 50 adjacent normal tissues were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma database. The gene expression profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver tissue samples, were obtained from the Gene Expression Omnibus database. We analyzed the relationship between DNA methylation and gene expression levels after identifying the differentially methylated and expressed genes. Then, we developed and validated a risk score model based on the DNA methylation-driven genes. A tissue array consisting of 30 human hepatocellular carcinoma samples and adjacent normal tissues was used to assess the protein and mRNA expression levels of the marker genes by immunohistochemistry and qRT-PCR, respectively. Results: Three methylation-related differential genes were identified in our study: GLS, MEX3B, and GNA14. The results revealed that their DNA methylation levels were negatively correlated with local gene expression regulation. The gene methylation levels correlated strongly with the prognosis of patients with liver cancer. This was confirmed by qRT-PCR and immunohistochemical verification of the expression of these genes or proteins in tumors and adjacent tissues. These results revealed the relationship between the level of relevant gene methylation and the prognosis of patients with liver cancer as well as the underlying cellular and biological mechanisms. This allows our gene signature to provide more accurate and appropriate predictions for clinical applications. Conclusion: Through bioinformatics analysis and experimental validation, we obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to predict the prognosis and may be a potential therapeutic target for HCC patients.
RESUMO
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly lethal tumor type, but studies on the ESCC tumor microenvironment are limited. We found that cystatin SN (CST1) plays an important role in the ESCC tumor microenvironment. CST1 has been reported to act as an oncogene in multiple human cancers, but its clinical significance and underlying mechanism in ESCC remain elusive. METHODS: We performed ESCC gene expression profiling with data from RNA-sequencing and public databases and found CST1 upregulation in ESCC. Then, we assessed CST1 expression in ESCC by RTâqPCR and Western blot analysis. In addition, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to estimate the expression of CST1 in ESCC tissue and serum. Moreover, further functional experiments were conducted to verify that the gain and loss of CST1 in ESCC cell lines significantly influenced the proliferation and metastasis of ESCC. Mass spectrometry, coimmunoprecipitation, and gelatin zymography experiments were used to validate the interaction between CST1 and matrix metalloproteinase 2 (MMP2) and the mechanism of CST1 influence on metastasis in ESCC. RESULTS: Here, we found that CST1 expression was significantly elevated in ESCC tissues and serum. Moreover, compared with patients with low CST1 expression, patients with high CST1 expression had a worse prognosis. Overall survival (OS) and disease-free survival (DFS) were significantly unfavorable in the high CST1 expression subgroup. Likewise, the CST1 level was significantly increased in ESCC serum compared with healthy control serum, indicating that CST1 may be a potential serum biomarker for diagnosis, with an area under the curve (AUC) = 0.9702 and p < 0.0001 by receiver operating curve (ROC) analysis. Furthermore, upregulated CST1 can promote the motility and metastatic capacity of ESCC in vitro and in vivo by influencing epithelial mesenchymal transition (EMT) and interacting with MMP2 in the tumor microenvironment (TME). CONCLUSIONS: Collectively, the results of this study indicated that high CST1 expression mediated by SPI1 in ESCC may serve as a potentially prognostic and diagnostic predictor and as an oncogene to promote motility and metastatic capacity of ESCC by influencing EMT and interacting with MMP2 in the TME.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação para Cima , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Microambiente Tumoral/genéticaRESUMO
Fall dormancy (FD) is an essential trait to overcome winter damage and for alfalfa (Medicago sativa) cultivar selection. The plant regrowth height after autumn clipping is an indirect way to evaluate FD. Transcriptomics, proteomics, and quantitative trait locus mapping have revealed crucial genes correlated with FD; however, these genes cannot predict alfalfa FD very well. Here, we conducted genomic prediction of FD using whole-genome SNP markers based on machine learning-related methods, including support vector machine (SVM) regression, and regularization-related methods, such as Lasso and ridge regression. The results showed that using SVM regression with linear kernel and the top 3000 genome-wide association study (GWAS)-associated markers achieved the highest prediction accuracy for FD of 64.1%. For plant regrowth height, the prediction accuracy was 59.0% using the 3000 GWAS-associated markers and the SVM linear model. This was better than the results using whole-genome markers (25.0%). Therefore, the method we explored for alfalfa FD prediction outperformed the other models, such as Lasso and ElasticNet. The study suggests the feasibility of using machine learning to predict FD with GWAS-associated markers, and the GWAS-associated markers combined with machine learning would benefit FD-related traits as well. Application of the methodology may provide potential targets for FD selection, which would accelerate genetic research and molecular breeding of alfalfa with optimized FD.
RESUMO
OBJECTIVE: To explore the Zedoary oil on A549 cell line of collagen deposition cat D and cat K expression. METHOD: The A549 cell line were treat by Zedoary oil on four different concentrations (0, 40, 80, 120 mg x L(-1)) in different time. Dynamic changes of collagen in A549 cell using Picric-sirius red method. Cat D and Cat K expression of level were detected by using western blot. RESULT: The collagen content showed that Zedoary oil had an inhibitory effect on the deposition of A549 cells. The results of western blot showed that the expression of cat D and cat K were up-regulated significangly in A549 cells of Zedoary oil groups compared with that in controls. CONCLUSION: A549 cell of collagen deposition were reduced by Zedoary oil. The effects may due to the up-regulation of cat D and cat K.
Assuntos
Catepsina D/metabolismo , Catepsina K/metabolismo , Curcuma/química , Óleos de Plantas/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Colágeno/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Regulação para CimaRESUMO
OBJECTIVE: To optimize the processing technologies of Dipsaci Radix by comprehensive method. METHODS: According to the Chinese Pharmacopoeia (2010 edition), UV Spectrophotometry and HPLC analysis were used to determine the contents of total saponins, saponins VI of water extract and alcohol extract of Dipsaci Radix. Comprehensive evaluation method was used to optimize the processing technologies for Dipsaci Radix habitat. RESULTS: The sequence of quality of processing was as follows: baked half dry sweating products (0.7046) > half dry sweating products (0.5857) in the shade > scald soft sweating products (0.5852) > bask dried products (0.3138) > evaporate soft sweating products (0.0952). CONCLUSION: The processing technology optimized by the comprehensive method can ensure the quality of Dipsaci Radix.
Assuntos
Dipsacaceae/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Saponinas/análise , Tecnologia Farmacêutica , Cromatografia Líquida de Alta Pressão , Dessecação , Dipsacaceae/crescimento & desenvolvimento , Medicamentos de Ervas Chinesas/química , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Controle de Qualidade , Saponinas/química , Saponinas/isolamento & purificaçãoRESUMO
Landfills are the main plastic sinks and microplastics (MPs) sources in the anthropogenic terrestrial system. Understanding the dynamic process of generating MPs is a prerequisite to reducing their potential risk, which remains unexplored because of the complex stabilization process of landfills. In this study, we investigated the evolution process of MPs generated in a partitioned landfill, with well-recorded disposal ages of over 30 years. Considering the initial plastic proportions in fresh landfilled waste, the occurrence of MPs increased exponentially with the disposal age. A booming generation of MPs occurred from 71.3 ± 17.7 items/(g plastic) to 653.1 ± 191.5 items/(g plastic). The generation rates of MPs varied greatly depending on the individual polymer types, with polyethylene (PE) having the highest generation rate of 28.4 items/(g plastic) per year at 31 years, compared to that of polypropylene (PP) and polystyrene (PS) at 15.0 and 9.6 items/(g plastic) per year, respectively. The variation in the carbonyl index indicated that environmental oxidation might facilitate the fragmentation of plastic waste. The relative abundance of plastic-degrading microbes increased more than three times in the plastisphere after 30 years of landfilling, indicating that the potential biodegradation might be a nonnegligible driver for plastic fragmentation after long-term natural acclimatization. This study revealed the dynamic evolution process of MPs in landfills and predicted the booming stage, which might provide an important guideline for reducing the leakage risk of MPs during the reclamation of old landfills or dumping sites.
Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Polietileno , Polipropilenos , Poliestirenos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análiseRESUMO
In this study, we investigated the functional role of eukaryotic initiation factor 5B (EIF5B) in hepatocellular carcinoma (HCC) and the underlying mechanisms. Bioinformatics analysis demonstrated that the EIF5B transcript and protein levels as well as the EIF5Bcopy number were significantly higher in the HCC tissues compared with the non-cancerous liver tissues. Down-regulation of EIF5B significantly decreased proliferation and invasiveness of the HCC cells. Furthermore, EIF5B knockdown suppressed epithelial-mesenchymal transition (EMT) and the cancer stem cell (CSC) phenotype. Down-regulation of EIF5B also increased the sensitivity of HCC cells to 5-fluorouracil (5-FU). In the HCC cells, activation of the NF-kappa B signaling pathway and IkB phosphorylation was significantly reduced by EIF5B silencing. IGF2BP3 increased the stability of the EIF5B mRNA in an m6A-dependent manner. Our data suggested that EIF5B is a promising prognostic biomarker and therapeutic target in HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular , Biologia Computacional , FluoruracilaRESUMO
With the increasing pollution of plastics and the widespread use of polylactic acid (PLA), its weathering process in the natural environment needs to be studied. Hence, we investigated the characteristics of PLA under conventional weathering conditions and the adsorption behavior between PLA and tetracycline (TC). The results showed cracks and holes in the weathered PLA surface, an increase in oxygen-containing functional groups, and a 77.94 % decrease in contact angle, causing more amount of TC to be adsorbed. The maximum adsorption capacity of PLA for TC is approximately 3.5 times higher than before weathering due to multilayer physical adsorption. Nevertheless, the surface of the microplastics weathered by seawater did not change significantly. This work elucidates the weathering mechanism of biodegradable microplastics under abiotic conditions, thus correctly assessing the difference in natural and conventional degradability of biodegradable plastics.
Assuntos
Plásticos Biodegradáveis , Poluentes Químicos da Água , Adsorção , Antibacterianos , Microplásticos , Plásticos , Poliésteres , Tetraciclina , Poluentes Químicos da Água/análiseRESUMO
Alfalfa (Medicago sativa L.) is the most important legume forage crop worldwide with high nutritional value and yield. For a long time, the breeding of alfalfa was hampered by lacking reliable information on the autotetraploid genome and molecular markers linked to important agronomic traits. We herein reported the de novo assembly of the allele-aware chromosome-level genome of Zhongmu-4, a cultivar widely cultivated in China, and a comprehensive database of genomic variations based on resequencing of 220 germplasms. Approximate 2.74 Gb contigs (N50 of 2.06 Mb), accounting for 88.39% of the estimated genome, were assembled, and 2.56 Gb contigs were anchored to 32 pseudo-chromosomes. A total of 34,922 allelic genes were identified from the allele-aware genome. We observed the expansion of gene families, especially those related to the nitrogen metabolism, and the increase of repetitive elements including transposable elements, which probably resulted in the increase of Zhongmu-4 genome compared with Medicago truncatula. Population structure analysis revealed that the accessions from Asia and South America had relatively lower genetic diversity than those from Europe, suggesting that geography may influence alfalfa genetic divergence during local adaption. Genome-wide association studies identified 101 single nucleotide polymorphisms (SNPs) associated with 27 agronomic traits. Two candidate genes were predicted to be correlated with fall dormancy and salt response. We believe that the allele-aware chromosome-level genome sequence of Zhongmu-4 combined with the resequencing data of the diverse alfalfa germplasms will facilitate genetic research and genomics-assisted breeding in variety improvement of alfalfa.
Assuntos
Medicago sativa , Polimorfismo de Nucleotídeo Único , Elementos de DNA Transponíveis , Estudo de Associação Genômica Ampla , Medicago sativa/genética , NitrogênioRESUMO
Alfalfa (Medicago sativa L.) is a perennial forage crop known as the "Queen of Forages." To dissect the genetic mechanism of flowering time (FT) in alfalfa, high-density linkage maps were constructed for both parents of an F1 mapping population derived from a cross between Cangzhou (P1) and ZhongmuNO.1 (P2), consisting of 150 progenies. The FT showed a transgressive segregation pattern in the mapping population. A total of 13,773 single-nucleotide polymorphism markers was obtained by using restriction-site associated DNA sequencing and distributed on 64 linkage groups, with a total length of 3,780.49 and 4,113.45 cM and an average marker interval of 0.58 and 0.59 cM for P1 and P2 parent, respectively. Quantitative trait loci (QTL) analyses were performed using the least square means of each year as well as the best linear unbiased prediction values across 4 years. Sixteen QTLs for FT were detected for P1 and 22 QTLs for P2, accounting for 1.40-16.04% of FT variation. RNA-Seq analysis at three flowering stages identified 5,039, 7,058, and 7,996 genes that were differentially expressed between two parents, respectively. Based on QTL mapping, DEGs analysis, and functional annotation, seven candidate genes associated with flowering time were finally detected. This study discovered QTLs and candidate genes for alfalfa FT, making it a useful resource for breeding studies on this essential crop.