Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120158, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271883

RESUMO

Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.


Assuntos
Nitrogênio , Esgotos , Oxirredução , Nitrogênio/análise , Desnitrificação , Reatores Biológicos/microbiologia
2.
Kidney Int ; 103(4): 719-734, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669643

RESUMO

Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/complicações , Morte Celular , Regulação para Baixo , Rim/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Acoplados a Proteínas G/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle
3.
Mol Med ; 29(1): 164, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049750

RESUMO

BACKGROUND: Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-ß-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear. METHODS: To assess the protective effect of L-BAIBA against lung I/R injury, an animal model was generated by clamping the hilum of the left lung, followed by releasing the clamp in C57BL/6 mice. Mice with lung I/R injury were pre-treated or post-treated with L-BAIBA (150 mg/kg/day), given by gavage or intraperitoneal injection. Lung injury was assessed by measuring lung edema and analyzing blood gases. Inflammation was assessed by measuring proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), and neutrophil infiltration of the lung was measured by myeloperoxidase activity. Molecular biological methods, including western blot and immunofluorescence, were used to detect potential signaling mechanisms in A549 and BEAS-2B cells. RESULTS: We found that L-BAIBA can protect the lung from I/R injury by inhibiting ferroptosis, which depends on the up-regulation of the expressions of GPX4 and SLC7A11 in C57BL/6 mice. Additionally, we demonstrated that the Nrf-2 signaling pathway is key to the inhibitory effect of L-BAIBA on ferroptosis in A549 and BEAS-2B cells. L-BAIBA can induce the nuclear translocation of Nrf-2. Interfering with the expression of Nrf-2 eliminated the protective effect of L-BAIBA on ferroptosis. A screening of potential signaling pathways revealed that L-BAIBA can increase the phosphorylation of AMPK, and compound C can block the Nrf-2 nuclear translocation induced by L-BAIBA. The presence of compound C also blocked the protective effects of L-BAIBA on lung I/R injury in C57BL/6 mice. CONCLUSIONS: Our study showed that L-BAIBA protects against lung I/R injury via the AMPK/Nrf-2 signaling pathway, which could be a therapeutic target.


L-BAIBA upregulates the expression of GPX4 and SLC7A11 by activating the AMPK/Nrf-2/GPX4/SLC7A11 signaling pathway, thereby protecting against I/R-induced increase in ROS and ferroptosis in the lung.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
J Hepatol ; 76(3): 558-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34736969

RESUMO

BACKGROUND & AIMS: Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS: Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS: Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS: Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY: Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.


Assuntos
Hepatócitos/citologia , Proteínas de Membrana/metabolismo , Substâncias Protetoras/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Citosol/metabolismo , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Proteínas de Membrana/análise , Proteínas de Membrana/sangue , Camundongos , Fatores de Proteção
5.
Clin Sci (Lond) ; 135(2): 409-427, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33458737

RESUMO

Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.


Assuntos
Gastrinas/farmacologia , Hipertensão Renal/fisiopatologia , Nefrite/fisiopatologia , PPAR alfa/metabolismo , Receptores da Colecistocinina/metabolismo , Angiotensina II/administração & dosagem , Animais , Apoptose , Fibrose , Humanos , Hipertensão/complicações , Células Jurkat , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Knockout , PPAR alfa/genética , Fagocitose , RNA Interferente Pequeno , Receptores da Colecistocinina/genética , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/fisiopatologia
6.
Langmuir ; 36(47): 14255-14267, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206532

RESUMO

Electrocoalescence technology is an important method for the demulsification of crude oil emulsion, but its development is restricted by the short circuit caused by droplet chain formation. To reveal the formation mechanism of droplet chains, the electrocoalescence behaviors of two droplets and droplet clusters under pulsed direct current (DC) electric fields are experimentally studied. The two droplets usually successively undergo complete coalescence, partial coalescence, and noncoalescence as the electric field strength increases. The critical electric field strengths for complete coalescence under pulsed DC electric fields with different frequencies are obtained. The effects of the electric field waveform and frequency on the noncoalescence characteristics of two droplets and the stability of droplet chains are explored. The droplet chains under a high-frequency electric field are more stable and longer than those under a low-frequency electric field due to the reduction of the movement distance and the generation of daughter droplets from tip streaming. The reversal of the composition of electric forces due to charge transfer is the fundamental mechanism of noncoalescence of two droplets and chain formation in the emulsion under a pulsed DC electric field.

7.
Catheter Cardiovasc Interv ; 87(3): E86-96, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26651031

RESUMO

OBJECTIVES: It has been reported that vascular plugging has become a therapeutic alternative to coil embolization in certain cases that require occlusion. However, the use of a relatively large and rigid delivery sheath may be a limiting factor in vascular plug use. In this study, we aimed to determine the safety and efficacy of a novel transcatheter occlusion device with unique design and delivery system in a pig model. METHODS: The Cera vascular plug was delivered and deployed through the FuStar steerable introducer sheath, which can control tip direction during advancement. Twelve pigs were randomized to undergo an embolization procedure in which the Cera vascular plug was implanted into the left internal iliac artery (IIA) with the FuStar steerable introducer (n = 6) or a control introducer sheath. Another eight pigs were assigned to undergo an embolization procedure in which the test device was implanted into either the splenic artery (SA, n = 4) or the lower segmental branch of left renal artery (LRA, n = 4). Angiography and pathological examinations were performed to evaluate the outcomes. RESULTS: A total of 20 target vessels were embolized with a total of 22 test plugs. Compared with the control introducer, plug embolization through the FuStar steerable introducer was associated with shorter fluoroscopy time (21.50 ± 3.62 vs. 28.33 ± 2.16 min, P = 0.003) and less contrast medium (129.17 ± 22.68 vs. 162.50 ± 13.69 mL, P = 0.012). At the 2-month follow-up, angiography and pathological examinations did not show any evidence of migration, and persistent occlusion was observed in 18 of the 20 target vessels. Organ ischemia occurred when plugs were deployed within the lower segmental branch of the LRA. CONCLUSION: This novel device is suitable for therapeutic vascular embolization with the use of flexible delivery systems. The different outcomes of SA and LRA plugging suggested that the occluding device should be placed within the appropriate portion of the target vessel to allow the development of collateralization.


Assuntos
Embolização Terapêutica/instrumentação , Procedimentos Endovasculares/instrumentação , Artéria Ilíaca , Artéria Renal , Artéria Esplênica , Dispositivos de Acesso Vascular , Animais , Embolização Terapêutica/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Desenho de Equipamento , Artéria Ilíaca/diagnóstico por imagem , Isquemia/etiologia , Masculino , Modelos Animais , Artéria Renal/diagnóstico por imagem , Artéria Esplênica/diagnóstico por imagem , Suínos
8.
Langmuir ; 31(30): 8275-83, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26138311

RESUMO

In this paper, the conical breakup of a water droplet suspended in oil under the alternating current (ac) electric field was experimentally studied with the help of a high-speed video camera. We observed three stages of transient oscillation of deformation characterized by deformation degree l* before the conical breakup that were described in detail. Then a theoretical model was developed to find out the dynamic mechanisms of that behavior. Despite a very small discrepancy, good agreement between model predictions and experimental observations of the evolution of the droplet deformation was observed, and the possible reasons for the discrepancy were discussed as well. Finally, the stresses on the interface were calculated with the theoretical model and their influence on the dynamic behavior before the breakup was obtained. The differences between the droplet breakup mode of ac and direct current electric field are also discussed in our paper.

9.
Water Res ; 251: 121149, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237462

RESUMO

The development of efficient and low-consumption wastewater upgrading process is currently at the forefront of the wastewater treatment field. In this study, a novel wastewater treatment process based on powder carriers was proposed. Three systems, namely the activated sludge (AS) system, powder carrier (PC) system, and moving bed biofilm reactor (MBBR) system, were established and operated for over 140 days to treat real municipal wastewater. The characteristics and differences between the three systems were comprehensively investigated. The results suggested that the PC system exhibited notable advantages in nitrogen and phosphorus removal, especially under high influent load and low aeration conditions. The PC system, characterized by a higher nitrification rate compared to the MBBR system and a higher denitrification rate compared to the AS system, contributed to the stable nitrogen removal performance. The particle size of the zoogloea increased under the linkage of the powder carriers, and the mean size of micro-granules reached 170.88 µm. Large number of hydrophobic functional groups on sludge surface, coupled with increased protein content in EPS, further promoted sludge aggregation. Micro-granules formation improved settling performance and enhanced the abundance and activity of functional microbes. A significant enrichment in denitrifying bacteria and denitrifying phosphorus accumulating bacteria was observed in PC system. Up-regulation of the napA, narG, and nosZ genes was responsible for efficient nitrogen removal of the PC system. Moreover, a higher abundance in polyphosphate phosphotransferase (2.11 %) was found in PC system compared with AS and MBBR systems. The increase in the enzymes associated with poly-ß-hydroxybutyrate (PHB) synthesis metabolism in PC system provided the energy for denitrification and phosphorus removal processes.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Pós , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/análise , Fósforo/metabolismo , Biofilmes , Desnitrificação , Reatores Biológicos/microbiologia , Nitrificação
10.
Heliyon ; 10(10): e30806, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803858

RESUMO

Platinum-based chemotherapies, historically the cornerstone of first-line treatment for small-cell lung cancer (SCLC), face a major hurdle: the frequent emergence of chemoresistance, notably to cisplatin (CDDP). Current understanding of the mechanisms driving CDDP resistance in SCLC is incomplete. Notably, Interferon inducible transmembrane protein1 (IFITM1) has been identified as a key player in the distant metastasis of SCLC. Analysis of The Cancer Genome Atlas (TCGA) database revealed that IFITM1 expression is markedly elevated in tumor tissues as compared to that from adjacent normal tissues, correlating with a worse prognosis for patients with SCLC. Our research focused on investigating the role of IFITM1 in the acquisition of cisplatin resistance in SCLC. Further clinical sample analysis highlighted a significant increase in IFITM1 levels in SCLC tissues from cisplatin-resistant patients versus those were responsive to CCDP treatment, with similar trends observed in cisplatin-resistant SCLC cells. Crucially, overexpression of IFITM1 reduced the sensitivity of SCLC cells to cisplatin, while silencing IFITM1 enhanced chemosensitivity in cisplatin-resistant strains. Our in vivo studies further confirmed that silencing IFITM1 significantly boosted the efficacy of cisplatin in inhibiting growth of subcutaneous tumors of NCI-H466/CDDP cells (cisplatin-resistant SCLC cells) in a mouse model. Mechanistically, IFITM1 appears to foster cisplatin resistance through activation of the Wnt/ß-catenin pathway. In summary, our findings suggest that targeting IFITM1, alongside cisplatin treatment, could offer a promising therapeutic strategy to overcome resistance and improve outcomes for SCLC patients.

11.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428595

RESUMO

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Assuntos
Microalgas , Scenedesmus , Raios Ultravioleta , Anaerobiose , Bactérias , Biomassa , Nitrogênio , Bacteroidetes , Lipídeos
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 3010-3, 2013 Nov.
Artigo em Zh | MEDLINE | ID: mdl-24555370

RESUMO

To explore the feasibility of using near-infrared reflectance spectroscopy (NIRS) to evaluate alfalfa quality rapidly in the field and try to find the appropriate machine and sample preparation method, the representative population of 170 fresh alfalfa samples collected from different regions with different stages and different cuts were scanned by a portable NIRS spectrometer (1 100 - 1 800 nm). This is the first time to build models of fresh alfalfa to rapidly estimate quality in the field for harvesting in time. The calibrations of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were developed through the partial least squares regression (PLS). The determination coefficients of cross-validation (R2((CV)) were 0.831 4, 0.597 9, 0.803 6, 0.786 1 for DM, CP, NDF, ADF, respectively; the root mean standard error of cross-validation (RMSECV) were 1.241 1, 0.261 4, 0.990 3, 0.830 6; The determination coefficients of validation (R2(V)) were 0.815 0, 0.401 1, 0.784 9, 0.752 1 and the root mean standard errors of validation(RMSEP)were 1.06, 0.31, 0.95, 0.80 for DM, CP, NDF, ADF, respectively. For fresh alfalfa ,the calibration of DM, NDF, ADF can do rough quantitative analysis but the CP's calibration is failed. however, as CP in alfalfa hay is enough for animal and the DM, NDF and ADF is the crucial indicator for evaluating havest time, the model of DM, NDF and ADF can be used for evaluating the alfalfa quality rapidly in the field.


Assuntos
Medicago sativa , Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Análise dos Mínimos Quadrados
13.
J Hazard Mater ; 443(Pt B): 130110, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332277

RESUMO

Sewage sludge is the byproduct of wastewater treatment plants, which host enormous diversity of microbes including potential pathogens. However, there are still challenges in assessing hygienization during sludge stabilization due to the complex relationships between dominant microbes and human pathogenic bacteria (HPB), and the accuracy of fecal indicator bacteria (FIB) is also disputed. Here, the responses of the bacterial community, HPB, and FIB to sludge pretreatment-anaerobic digestion (AD) were comprehensively compared using culture-based and 16S rRNA gene molecular analysis methodologies. Bacterial and HPB communities differed in response to sludge pretreatment-AD. AD drove the variation of bacterial community, but led to the convergence of HPB communities in pretreated sludge, indicating the existence of ecological niches that favors HPB dissemination in digesters. The correlation analysis indicated that FIB was suitable for characterizing general pathogen removal instead of showing the real pattern of HPB (i.e., each HPB), implying the need for comprehensive assessment approaches. Moreover, AD-related parameters including pH, total solids destruction, and methane yield were found to play important role in assessing pathogen inactivation given their correlation. This work provides theoretical basis for the selection of appropriate sludge stabilization approaches and future supervision of biosolids biosafety, which finally benefits human health.


Assuntos
Bactérias , Esgotos , Humanos , Esgotos/química , Anaerobiose , RNA Ribossômico 16S/genética , Bactérias/genética , Metano , Reatores Biológicos/microbiologia
14.
Sci Total Environ ; 864: 161068, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565887

RESUMO

A large amount of household food waste (HFW) is produced yearly, resulting in environmental problems and financial burdens. Bio-production of lactic acid (LA), a high value-added platform chemical, from HFW by anaerobic fermentation is a promising way of resource recovery. However, the LA production yield from HFW is low. This paper compared several pretreatment methods (hydrothermal pretreatment, chemical pretreatment, and combined hydrothermal and chemical pretreatment) to improve LA production from HFW. The result showed that the combined pretreatment (alkali-thermal pretreatment at pH 10 and 120 °C) significantly increased the LA production than single hydrothermal and chemical pretreatment. The pretreatment process promoted the dissolution of organics, especially the polysaccharides and amino acids, and further influenced the LA production by Lactobacillus rhamnosus ATCC 7469. Among the amino acids, aspartic acid (Asp), threonine (Thr), glutamic acid (Glu), glycine (Gly), alanine (Ala), cystine (Cys), valine (Val), isoleucine (Ile), arginine (Arg), and proline (Pro) significantly correlated with LA concentration.


Assuntos
Aminoácidos , Eliminação de Resíduos , Sequência de Aminoácidos , Alimentos , Solubilidade , Tripsina , Polissacarídeos
15.
Water Res ; 235: 119893, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989808

RESUMO

Coupling municipal anaerobic digestate (MAD) treatments with microalgal cultivation can concomitantly achieve nutrient removal and microalgal bioenergy production. However, the high cost caused by dilution water and microalgal harvesting is a great challenge. In this study, Scenedesmus quadricauda was screened as the most appropriate algae strain due to its potential for growth and auto-flocculation, and the MAD diluted 5-fold with WWTP effluent was demonstrated as an ideal medium for S. quadricauda growth. Moreover, inspired by naturally generated silica shells of diatoms, a low-cost and biomimetic auto-flocculation strategy that combined high light intensity induction and microalgal silicification was proposed to accelerate the auto-flocculation process. Compared with low light intensity groups, this strategy imparted diatom-like features to S. quadricauda cells, and contributed to 3.07-fold higher auto-flocculation efficiency within 30 min. It was attributed to the fact that the high light intensity of 150 µmol·m - 2·s - 1 stimulated the extracellular polymeric substances (EPS) secretion and induced the variation in property and composition of EPS, especially the protein secondary structures, which allowed silica nanoparticles to spontaneously attach onto S. quadricauda cells in the presence of viscous EPS. Furthermore, this strategy significantly increased microalgal biomass yield to a dry weight of 1.37 g·L - 1, accompanied by 93.78%, 96.39% and 91.36% removals of NH4+-N, TP, and COD, respectively. The productivity of valuable by-products, including lipid, carbohydrate, protein, and pigment, reached 56.30, 101.35, 30.39 and 11.28 mg·L - 1·d - 1, respectively. Overall, this study supplies a novel approach for low-cost microalgal bioenergy production from MAD and energy-efficient microalgae harvest by auto-flocculation.


Assuntos
Microalgas , Scenedesmus , Floculação , Anaerobiose , Microalgas/metabolismo , Biomassa
16.
Water Res ; 247: 120765, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907011

RESUMO

The sustainable application of thermal sludge drying process is limited by the high energy consumption due to the phase-change latent heat of moisture. This study proposed that the ultrahigh pressure filtration could realize the non-phase-change sludge drying. The lowest water content of 28.12 wt.% was realized by the filtration pressure of 21 MPa for the excess sludge with polyaluminium chloride as the conditioning agent. With the stepwise increase of filtration pressure employed (5-21 MPa), the diameter of solid pores was gradually narrowed to the same order of magnitude with the thickness of vicinal water film (i.e., 1-10 nm). As a result, the capillary water was transformed into the vicinal water, and the solid-water interface interaction played more crucial roles in water occurrence states. However, Hagen-Poiseuille equation was introduced to estimate the pore water outflow based on the pore wall hydrophilicity and the external filtration pressure, which implied that there can be always a sufficiently large driving force to maintain the water outflow rate no matter how the pore diameter is small and the sidewall is hydrophilic. Typically, the fitting results of excess sludge (R2=0.985, p-value<0.01) indicated that the pressure gradient of 2.11 × 109 Pa/m was required to maintain the pore water flow rate of 1.38 × 10-15 m3/s with the median pore diameter of 5.33 × 10-7 m. All these findings broke through the conventional cognition that only thermal drying process can decrease the sludge water content below 60 wt.%, and facilitated energy saving of sludge dewatering process through non-phase-change separation, i.e., ultrahigh pressure filtration.


Assuntos
Filtração , Esgotos , Esgotos/química , Filtração/métodos , Água/química , Dessecação , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos/métodos
17.
Chemosphere ; 337: 139353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414297

RESUMO

This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.


Assuntos
Tempestades Ciclônicas , Esgotos , Esgotos/química , Pós , Fósforo/análise , Metagenômica , Matriz Extracelular de Substâncias Poliméricas/química , Desnitrificação , Reatores Biológicos , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos
18.
Bioresour Technol ; 388: 129739, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696333

RESUMO

This study posed a novel biomimetic flocculation approach, aiming to efficiently harvest high-quality biomass of Scenedesmus quadricauda cultured with anaerobic digestate. Here, that poly(diallyldimethylammonium chloride) (PDADMAC) could serve as mimetic silicified proteins to spontaneously incorporate nanosilica onto microalgal cells, imparting diatom-like characteristics to S. quadricauda. Compared to the exponential growth phase (day 3), the highest harvesting efficiency (93.49%) was obtained at a lower dosage of PDADMAC (5 mg/g) in the stationary phase (day 6), which was attributed to changes in properties and composition of microalgal LB-EPS. On day 6, the hydrophobic functional groups in LB-EPS provided more binding sites during the flocculation process and formed a network structure of microalgal cells-flocculants-nanosilica. The resulting larger and more stable biomimetic silica shell promoted microalgal flocculation and sedimentation. Compared to conventional harvesting methods (centrifugation, polyacrylamide, alkaline flocculation), this method had the minimal negative impact on harvested biomass, with 9.95% of cell membranes damaged.


Assuntos
Microalgas , Biomassa , Floculação
19.
Sci Total Environ ; 886: 164002, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169196

RESUMO

In practice, the influent organic matter is often pre-treated to reduce the impact on partial nitritation-anammox (PNA) process. However, the influent organics may also drive the denitrification process and improve total nitrogen removal efficiency of the PNA process. Thus, we designed and operated a novel dissolved oxygen-differentiated airlift internal circulation PNA (PNA-DOAIC) system in this study at various influent C/N ratios of 0-4.0. Nitrogen removal performance, microbial activity and community, and metabolic pathways in response to varying organic matter stress were investigated via the continuous experiment combined with batch test. The results showed that the optimum influent C/N ratio was 2.0 in this system, and the efficient and stable operation was still maintained at the C/N ratios of 0-3. At this time, the TN removal efficiency and removal rate could reach 95.1 % and 0.93 kg-N/m3/d, respectively, while COD efficiency remained at 95.4 %. Efficient removal performance was achieved via the PNA coupled with denitrification. However, the anammox bacteria (AnAOB) activity and abundance declined persistently as the influent C/N ratio was further raised, and heterotrophic bacteria gradually replaced AnAOB as dominate genus. Meanwhile, metabolic functions involving the material exchange and organic degradation were significantly enhanced. Nitrogen removal pathways changed from PNA to the nitrification-denitrification process. This study provides deep insights into effects of organic matter on the PNA process and can expand the application scope of this novel PNA-DOAIC bioreactor.


Assuntos
Oxidação Anaeróbia da Amônia , Desnitrificação , Oxirredução , Nitrificação , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Redes e Vias Metabólicas , Esgotos/microbiologia
20.
Sci Rep ; 13(1): 1540, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707630

RESUMO

Light detection and ranging (LiDAR) using various operational principles has been applied in many fields, e.g., robotics navigation, autonomous vehicles, unmanned aerial flyers, land surveying, etc. The multichannel LiDAR system is of great importance in the field of autonomous driving due to its larger field of view (FoV). However, the number of transceivers limits the vertical angular resolution of multichannel LiDAR systems and makes them costly. On the other hand, the emergence of microelectromechanical systems (MEMS) mirrors may provide a highly promising solution to a low-cost, high angular resolution LiDAR system. We have demonstrated a MEMS mirror-based 360° LiDAR system with high angular resolution and will present the detailed design process and obtained experimental results in this paper. With the combination of the MEMS mirror and a rotation platform for the LiDAR system, a 360° × 8.6° (horizontal × vertical) FoV was achieved. Compared with existing commercial multichannel 360° LiDAR systems, our system has 13.8 times better angular resolution than the Velodyne HDL-64 LiDAR sensor. The experimental results verified an excellent performance of 0.07° × 0.027° (horizontal × vertical) angular resolution, which enhances the panoramic scanning and imaging capability of the LiDAR system, potentially providing more accurate 3D scanning applications in areas such as autonomous vehicles, indoor surveying, indoor robotics navigation, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA