Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817142

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Ferro
2.
J Nanobiotechnology ; 20(1): 36, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033108

RESUMO

Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a top killer among infectious diseases. While Bacillus Calmette-Guerin (BCG) is the sole TB vaccine, the clumped-clustered features of BCG in intradermal immunization appear to limit both the BCG protection efficacy and the BCG vaccination safety. We hypothesize that engineering of clumped-clustered BCG into nanoscale particles would improve safety and also facilitate the antigen-presenting-cell (APC)'s uptake and the following processing/presentation for better anti-TB protective immunity. Here, we engineered BCG protoplasts into nanoscale membraned BCG particles, termed as "BCG-Nanocage" to enhance the anti-TB vaccination efficiency and safety. BCG-Nanocage could readily be ingested/taken by APC macrophages selectively; BCG-Nanocage-ingested macrophages exhibited better viability and developed similar antimicrobial responses with BCG-infected macrophages. BCG-Nanocage, like live BCG bacilli, exhibited the robust capability to activate and expand innate-like T effector cell populations of Vγ2+ T, CD4+ T and CD8+ T cells of rhesus macaques in the ex vivo PBMC culture. BCG-Nanocage immunization of rhesus macaques elicited similar or stronger memory-like immune responses of Vγ2Vδ2 T cells, as well as Vγ2Vδ2 T and CD4+/CD8+ T effectors compared to live BCG vaccination. BCG-Nanocage- immunized macaques developed rapidly-sustained pulmonary responses of Vγ2Vδ2 T cells upon Mtb challenge. Furthermore, BCG- and BCG-Nanocage- immunized macaques, but not saline controls, exhibited undetectable Mtb infection loads or TB lesions in the Mtb-challenged lung lobe and hilar lymph node at endpoint after challenge. Thus, the current study well justifies a large pre-clinical investigation to assess BCG-Nanocage for safe and efficacious anti-TB vaccination, which is expected to further develop novel vaccines or adjuvants.


Assuntos
Vacina BCG , Linfócitos T CD8-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Nanoestruturas/química , Tuberculose/imunologia , Animais , Vacina BCG/química , Vacina BCG/imunologia , Células Cultivadas , Feminino , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Macaca mulatta , Masculino
3.
Proc Natl Acad Sci U S A ; 116(13): 6371-6378, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850538

RESUMO

Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.


Assuntos
Imunização , Ativação Linfocitária/efeitos dos fármacos , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Memória Imunológica/imunologia , Interferon gama/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Pulmão/imunologia , Pulmão/patologia , Macaca mulatta/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/efeitos dos fármacos , Organofosfatos , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Tuberculose/patologia , Vacinas contra a Tuberculose/farmacologia , Vacinas Atenuadas/imunologia
4.
J Immunol ; 200(7): 2405-2417, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453279

RESUMO

The ability of Mycobacterium tuberculosis to block host antimicrobial responses in infected cells provides a key mechanism for disease pathogenesis. The immune system has evolved to overcome this blockade to restrict the infection, but it is not clear whether two key innate cytokines (IL-12/IL-18) involved in host defense can enhance antimycobacterial mechanisms. In this study, we demonstrated that the combination of IL-12 and IL-18 triggered an antimicrobial response against mycobacteria in infected macrophages (THP-1 and human primary monocyte-derived macrophages) and pulmonary epithelial A549 cells. The inhibition of intracellular bacterial growth required p38-MAPK and STAT4 pathways, the vitamin D receptor, the vitamin D receptor-derived antimicrobial peptide cathelicidin, and autophagy, but not caspase-mediated apoptosis. Finally, the ability of IL-12+IL-18 to activate an innate antimicrobial response in human primary macrophages was dependent on the autonomous production of IFN-γ and the CAMP/autophagy pathway. Together, these data suggest that IL-12+IL-18 cosignaling can trigger the antimicrobial protein cathelicidin and autophagy, resulting in inhibition of intracellular mycobacteria in macrophages and lung epithelial cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Imunidade Inata/imunologia , Interferon gama/imunologia , Subunidade p35 da Interleucina-12/imunologia , Interleucina-18/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/imunologia , Células A549 , Autofagia/imunologia , Linhagem Celular Tumoral , Células Epiteliais/imunologia , Humanos , Mycobacterium tuberculosis/imunologia , Receptores de Calcitriol/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Fator de Transcrição STAT4/metabolismo , Células THP-1 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Catelicidinas
5.
Angew Chem Int Ed Engl ; 59(8): 3226-3234, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31756258

RESUMO

Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.


Assuntos
Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Isoniazida/química , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Selênio/química , Tuberculose/tratamento farmacológico , Humanos , Tuberculose/patologia
6.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356537

RESUMO

Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines.IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines.


Assuntos
Macaca , Poliomielite/patologia , Poliovirus/crescimento & desenvolvimento , Poliovirus/patogenicidade , Estruturas Animais/virologia , Animais , Modelos Animais de Doenças , Células Epiteliais/virologia , Fezes/virologia , Leucócitos/virologia , Nasofaringe/virologia , Eliminação de Partículas Virais
7.
J Infect Dis ; 215(3): 420-430, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789724

RESUMO

A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine.


Assuntos
Interleucina-23/antagonistas & inibidores , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Proliferação de Células , Feminino , Humanos , Interleucina-2/antagonistas & inibidores , Interleucina-2/metabolismo , Interleucina-23/imunologia , Masculino , Organofosfatos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
Eur J Immunol ; 45(2): 442-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25141829

RESUMO

Whether cytokines can influence the adaptive immune response by antigen-specific γδ T cells during infections or vaccinations remains unknown. We previously demonstrated that, during BCG/Mycobacterium tuberculosis (Mtb) infections, Th17-related cytokines markedly upregulated when phosphoantigen-specific Vγ2Vδ2 T cells expanded. In this study, we examined the involvement of Th17-related cytokines in the recall-like responses of Vγ2Vδ2 T cells following Mtb infection or vaccination against TB. Treatment with IL-17A/IL-17F or IL-22 expanded phosphoantigen 4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP)-stimulated Vγ2Vδ2 T cells from BCG-vaccinated macaques but not from naïve animals, and IL-23 induced greater expansion than the other Th17-related cytokines. Consistently, Mtb infection of macaques also enhanced the ability of IL-17/IL-22 or IL-23 to expand HMBPP-stimulated Vγ2Vδ2 T cells. When evaluating IL-23 signaling as a prototype, we found that HMBPP/IL-23-expanded Vγ2Vδ2 T cells from macaques infected with Mtb or vaccinated with BCG or Listeria ΔactA prfA*-ESAT6/Ag85B produced IL-17, IL-22, IL-2, and IFN-γ. Interestingly, HMBPP/IL-23-induced production of IFN-γ in turn facilitated IL-23-induced expansion of HMBPP-activated Vγ2Vδ2 T cells. Furthermore, HMBPP/IL-23-induced proliferation of Vγ2Vδ2 T cells appeared to require APC contact and involve the conventional and novel protein kinase C signaling pathways. These findings suggest that Th17-related cytokines can contribute to recall-like expansion and effector function of Ag-specific γδ T cells after infection or vaccination.


Assuntos
Interleucina-17/imunologia , Mycobacterium tuberculosis/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Tuberculose/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica , Interferon gama/biossíntese , Interleucina-17/genética , Interleucina-17/farmacologia , Interleucina-2/biossíntese , Interleucina-23/farmacologia , Interleucinas/farmacologia , Listeria/imunologia , Macaca fascicularis , Mycobacterium bovis/imunologia , Organofosfatos/imunologia , Organofosfatos/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Proteínas Recombinantes/farmacologia , Células Th17/citologia , Células Th17/efeitos dos fármacos , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinação , Interleucina 22
9.
Microb Pathog ; 93: 1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792673

RESUMO

Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacina BCG/genética , Vacina BCG/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
11.
Acta Biochim Biophys Sin (Shanghai) ; 47(8): 588-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112017

RESUMO

Few treatment options for multidrug-resistant tuberculosis (TB) and extensively drug-resistant TB call attention to the development of novel therapeutic approaches for TB. Therapeutic vaccines are promising candidates because they can induce antigen-specific cellular immune responses, which play an important role in the elimination of Mycobacterium tuberculosis (MTB). In this study, a novel lentiviral vector therapeutic vaccine for delivering MTB-specific fusion protein Ag85B-Rv3425 was constructed. Results showed that one single-injection of this recombinant lentivirus vaccine could trigger antigen-specific Th1-type immune responses in mice. More importantly, mice with acute infection benefited a lot from a single-dose administration of this vaccine by markedly reduced MTB burdens in lungs and spleens as well as attenuated lesions in lungs compared with untreated mice. These results displayed good prospects of this novel vaccine for the immunotherapy of TB.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vetores Genéticos , Lentivirus , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Doença Aguda , Imunidade Adaptativa , Animais , Imunoterapia Ativa , Camundongos , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem
12.
Immunology ; 143(2): 277-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24773322

RESUMO

To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Bactérias/imunologia , Vetores Genéticos , Lentivirus/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinação , Aciltransferases/administração & dosagem , Aciltransferases/genética , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Vacina BCG/administração & dosagem , Carga Bacteriana , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/microbiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/microbiologia , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
13.
Biochem Biophys Res Commun ; 448(3): 255-60, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24792177

RESUMO

Mycobacterium tuberculosis, especially drug resistant tuberculosis, is a serious threat to global human health. Compared with other bacterial pathogens, M. tuberculosis gains stronger natural drug resistance from its unusually lipid-rich cell wall. As a DivIVA homolog, Wag31 has been demonstrated to be closely involved in peptidoglycan synthesis, cell growth and cell division. Previous research rarely investigated the role of Wag31 in drug resistance. In this study, we found Wag31 knock-down in Mycobacterium smegmatis resulted in a co-decrease of the resistance to four lipophilic drugs (rifampicin, novobiocin, erythromycin and clofazimine) and an increase in the cell permeability to lipophilic molecules. Six proteins (AccA3, AccD4 and AccD5, Fas, InhA and MmpL3) that are involved in fatty acid and mycolic acid synthesis were identified in the Wag31 interactome through Co-Immunoprecipitation. The Wag31-AccA3 interaction was confirmed by the pull-down assay. AccA3 overexpression resulted in a decrease in lipid permeability and an increase in the resistance of rifampicin and novobiocin. It confirmed the close relationship of lipophilic drug resistance, lipid permeability and the Wag31-AccA3 interaction. These results demonstrated that Wag31 maintained the resistance to lipophilic drugs and that Wag31 could play a role in controlling the lipid permeability of the cell wall through the Wag31-AccA3 interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Permeabilidade da Membrana Celular , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Técnicas de Silenciamento de Genes , Genes Bacterianos , Humanos , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Novobiocina/farmacologia , Rifampina/farmacologia
14.
Microb Pathog ; 69-70: 53-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24726737

RESUMO

Tuberculosis (TB) remains to be an enormous global health problem. The inconsistent protection efficacy of Bacille Calmette-Guérin (BCG) calls for new vaccines for TB. One choice to improve the efficacy of BCG vaccine is recombinant BCG (rBCG). Experimental evidences have revealed that Ag85B, ESAT-6 and Rv3620c are important immunodominant antigens of Mycobacterium tuberculosis. In this study, we have constructed a novel rBCG expressing fusion protein Ag85B-ESAT6-Rv3620c and evaluated the immunogenicity of this rBCG in C57BL/6 mice. Results show that there is a strong TB-specific CD4(+) and CD8(+) T lymphocytes proliferation in mice immunized with this rBCG vaccine. A single dose immunization of rBCG could induce a significantly strong Th1 immune response characterized by an increasing ratio of antigen-specific IgG2b/IgG1 as well as a high expression level of Th1 cytokines such as IFN-γ, TNF-α and IL-2. This conclusion was confirmed by a decreased secretion of Th2 cytokine IL-10. Moreover, this rBCG induced a strong humoral response in mice with an increasing antigen-specific IgG titer. Therefore, we concluded that this rBCG could significantly increase both Th1 type cellular immune response and antigen-specific humoral response compared with BCG. The above observations demonstrated that rBCG::Ag85B-ESAT6-Rv3620c is a potential candidate vaccine against M. tuberculosis for further study.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Bactérias/imunologia , Mycobacterium bovis/genética , Células Th1/imunologia , Aciltransferases/biossíntese , Aciltransferases/genética , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Vacina BCG/administração & dosagem , Vacina BCG/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Citocinas/metabolismo , Imunoglobulina G/sangue , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
15.
Emerg Microbes Infect ; 11(1): 1790-1805, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765887

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) is a refractory disease with high mortality rate due to no or few choices of antibiotics. Adjunctive immunotherapy may help improve treatment outcome of MDR-TB. Our decade-long studies demonstrated that phosphoantigen-specific Vγ2Vδ2 T cells play protective roles in immunity against TB. Here, we hypothesized that enhancing protective Vγ2Vδ2 T-effector cells could improve treatment outcome of MDR-TB. To address this, we employed clinically approved drugs Zoledronate (ZOL) and IL-2 to induce anti-TB Vγ2Vδ2 T-effector cells as adjunctive immunotherapy against MDR-TB infection of macaques. We found that adjunctive ZOL/IL-2 administrations during TB drugs treatment of MDR-TB-infected macaques significantly expanded Vγ2Vδ2 T cells and enhanced/sustained Vγ2Vδ2 T-effector subpopulation producing anti-TB cytokines until week 21. ZOL/IL-2 administrations, while expanding Vγ2Vδ2 T cells, significantly increased/sustained numbers of circulating CD4+ Th1 and CD8+ Th1-like effector populations, with some γδ T- or αß T-effector populations trafficking to airway at week 3 until week 19 or 21 after MDR-TB infection. Adjunctive ZOL/IL-2 administrations after MDR-TB infection led to lower bacterial burdens in lungs than TB drugs alone, IL-2 alone or saline controls, and resulted in milder MDR-TB pathology/lesions. Thus, adjunctive Zoledronate + IL-2 administrations can enhance anti-TB Vγ2Vδ2 T- and αß T-effector populations, and improve treatment outcome of MDR-TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Interleucina-2 , Macaca , Resultado do Tratamento , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Ácido Zoledrônico
16.
Front Immunol ; 12: 599641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732233

RESUMO

It remains undefined whether a subset of CD4+ T cells can function as fast-acting cells to control Mycobacterium tuberculosis (Mtb) infection. Here we show that the primary CD4+CD161+ T-cell subset, not CD4+CD161-, in unexposed healthy humans fast acted as unconventional T cells capable of inhibiting intracellular Mtb and BCG growth upon exposure to infected autologous and allogeneic macrophages or lung epithelial A549 cells. Such inhibition coincided with the ability of primary CD4+CD161+ T cells to rapidly express/secrete anti-TB cytokines including IFN-γ, TNF-α, IL-17, and perforin upon exposure to Mtb. Mechanistically, blockades of CD161 pathway, perforin or IFN-γ by blocking mAbs abrogated the ability of CD4+CD161+ T cells to inhibit intracellular mycobacterial growth. Pre-treatment of infected macrophages with inhibitors of autophagy also blocked the CD4+CD161+ T cell-mediated growth inhibition of mycobacteria. Furthermore, adoptive transfer of human CD4+CD161+ T cells conferred protective immunity against mycobacterial infection in SCID mice. Surprisingly, CD4+CD161+ T cells in TB patients exhibited a loss or reduction of their capabilities to produce perforin/IFN-γ and to inhibit intracellular growth of mycobacteria in infected macrophages. These immune dysfunctions were consistent with PD1/Tim3 up-regulation on CD4+CD161+ T cells in active tuberculosis patients, and the blockade of PD1/Tim3 on this subset cells enhanced the inhibition of intracellular mycobacteria survival. Thus, these findings suggest that a fast-acting primary CD4+CD161+T-cell subset in unexposed humans employs the CD161 pathway, perforin, and IFN-γ/autophagy to inhibit the growth of intracellular mycobacteria, thereby distinguishing them from the slow adaptive responses of conventional CD4+ T cells. The presence of fast-acting CD4+CD161+ T-cell that inhibit mycobacterial growth in unexposed humans but not TB patients also implicates the role of these cells in protective immunity against initial Mtb infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Transdução de Sinais , Tuberculose/imunologia , Tuberculose/metabolismo , Transferência Adotiva , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Animais , Autofagia/imunologia , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Viabilidade Microbiana/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tuberculose/microbiologia , Tuberculose/terapia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
17.
Clin Transl Immunology ; 10(2): e1254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708385

RESUMO

OBJECTIVES: Genetic and epigenetic mechanisms regulate antimicrobial immunity against Mycobacterium tuberculosis (Mtb) infection. METHODS: The present study assessed circular RNA TRAPPC6B (circTRAPPC6B) for antimicrobial immune functions and defined mechanisms wherein circTRAPPC6B regulates Mtb growth, autophagy and microRNA in macrophages. RESULTS: The Mtb infection of monocytes/macrophages resulted in a significantly decreased level of circTRAPPC6B that inhibited intracellular Mtb growth in macrophages. Conversely, circTRAPPC6B expression enhanced autophagy or autophagy-associated protein LC3-II production in Mtb-infected macrophages. circTRAPPC6B-enhanced autophagy aggregation or sequestration was also observed in fluorescence in situ hybridisation (FISH) analysis and confocal imaging. Mechanistically, circTRAPPC6B targets an inhibiting element miR-874-3p, as shown by bioinformatics, dual-luciferase reporter gene analysis and pull-down assay, respectively. Notably, miR-874-3p prohibited autophagy via suppressing autophagy protein ATG16L1 by binding to its 3'-untranslated region (UTR) in Mtb-infected macrophages and thus promoting intracellular Mtb growth. Concurrently, circTRAPPC6B enhanced autophagy in Mtb-infected macrophages by blocking the ability of miR-874-3p to inhibit ATG16L1. Thus, circTRAPPC6B antagonises the ability of miR-874-3p to suppress ATG16L1 expression and activate and enhance autophagy sequestration to restrict Mtb growth in macrophages. CONCLUSION: The current findings suggested that both circTRAPPC6B and miR-874-3p mechanisms can be explored as potential therapeutics against Mtb infection.

18.
Mater Sci Eng C Mater Biol Appl ; 103: 109777, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349400

RESUMO

Tuberculosis (TB), caused by M.tuberculosis (Mtb), has become a top killer among infectious diseases. Enhancing the ability of anti-TB drugs to kill intracellular Mtb in host cells remains a big challenge. Here, an innovative nano-system was developed to increase drug delivery and Mtb-killing efficacy in Mtb-infected macrophages. We employed mannose surface decoration to develop mannosylated and PEGylated graphene oxide (GO-PEG-MAN). Such nano-platform exhibited increased uptake by macrophages via mannose receptor-mediated endocytosis in vitro. Interestingly, drug-loaded GO-PEG-MAN was preferentially up-taken by mannose receptor-expressing mucosal CD14+ macrophages isolated from Mtb-infected rhesus macaques than drug-loaded GO-PEG. Consistently, the drug concentration was also significantly higher in macrophages than that in T and B cells expressing no or low mannose receptor, implicating a useful macrophage/mannose receptor-targeted drug-delivery system relevant to the in vivo settings. Concurrently, rifampicin-loaded GO-PEG-MAN (Rif@GO-PEG-MAN) significantly increased rifampicin uptake, inducing long-lasting higher concentration of rifampicin in macrophages. Such innovative Rif@GO-PEG-MAN could readily get into the lysosomes of the Mtb host cells, where rifampicin underwent an accelerated release in acidic lysosomic condition, leading to explosive rifampicin release after cell entry for more effective killing of intracellular Mtb. Most importantly, Rif@GO-PEG-MAN-enhanced intracellular rifampicin delivery and pharmacokinetics significantly increased the efficacy of rifampicin-driven killing of intracellular BCG and Mtb bacilli in infected macrophages both in vitro and ex vivo. Such innovative nanocarrier approach may potentially enhance anti-TB drug efficacy and reduce drug side effects.


Assuntos
Sistemas de Liberação de Medicamentos , Grafite , Macrófagos , Manose , Mycobacterium tuberculosis/metabolismo , Nanopartículas , Rifampina , Tuberculose , Animais , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Humanos , Macaca mulatta , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Manose/química , Manose/farmacocinética , Manose/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Rifampina/química , Rifampina/farmacocinética , Rifampina/farmacologia , Células THP-1 , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/patologia
19.
Exp Ther Med ; 15(3): 3034-3039, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29599838

RESUMO

The emergence of drug-resistant tuberculosis (TB) and HIV-TB co-infection fuels an urgent need to develop novel therapeutic approaches, including therapeutic vaccines. Therapeutic vaccines have been proven to be a good strategy by inducing antigen specific immune responses against TB infection. In the present study, a recombinant plasmid based on lentiviral vector expressing fusion antigen Ag85B-Rv3425 (A3), and was constructed the immunogenicity and treatment effects in TB mice were assessed. The results showed that A3 delivered by the plasmid could be expressed appropriately in vivo and induced higher production of tumor necrosis factor-α and interleukin-2 compared with A3 recombinant protein in mice. Moreover, the recombinant plasmid expressing A3 confered resistance to acute TB infection in mice, characterized by a reduction in the bacterial load in the lungs and spleen, as well as attenuated TB lesions in lung tissues. These results implicated that the recombinant plasmid based on lentiviral vector expressing A3 is a potent and promising therapeutic agent to treat acute TB infection.

20.
Emerg Microbes Infect ; 7(1): 207, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538219

RESUMO

Tuberculosis (TB) has become the most deadly infectious diseases due to epidemics of HIV/AIDS and multidrug-resistant/extensively drug-resistant TB (MDR-/XDR-TB). Although person-to-person transmission contributes to MDR-TB, it remains unknown whether infection with MDR strains resembles infection with drug-sensitive (DS) TB strains, manipulating limited or broad immune responses. To address these questions, macaques were infected with MDR strain V791 and a drug-sensitive Erdman strain of TB. MDR bacilli burdens in the airway were significantly higher than those of the Erdman control after pulmonary exposure. This productive MDR strain infection upregulated the expression of caspase 3 in macrophages/monocytes and induced appreciable innate-like effector responses of CD3-negative lymphocytes and Ag-specific γδ T-cell subsets. Concurrently, MDR strain infection induced broad immune responses of T-cell subpopulations producing Th1, Th17, Th22, and CTL cytokines. Furthermore, MDR bacilli, like the Erdman strain, were capable of inducing typical TB disease characterized by weight loss, lymphocytopenia, and severe TB lesions. For the first time, our results suggest that MDR-TB infection acts like DS to induce high bacterial burdens in the airway (transmission advantage), innate/adaptive immune responses, and disease processes. Because nonhuman primates are biologically closer to humans than other species, our data may provide useful information for predicting the effects of primary MDR strain infection after person-to-person transmission. The findings also support the hypothesis that a vaccine or host-directed adjunctive modality that is effective for drug-sensitive TB is likely to also impact MDR-TB.


Assuntos
Imunidade Adaptativa , Carga Bacteriana/imunologia , Imunidade Inata , Pulmão/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Animais , Caspase 3 , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla , Pulmão/microbiologia , Macaca , Macrófagos/imunologia , Macrófagos/microbiologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Tuberculose Pulmonar/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA