Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(19): 11230-11268, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589590

RESUMO

Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.

2.
Phys Rev Lett ; 126(1): 015901, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480802

RESUMO

We report measurements of the thermal Hall effect in single crystals of both pristine and isotopically substituted strontium titanate. We discovered a 2 orders of magnitude difference in the thermal Hall conductivity between SrTi^{16}O_{3} and ^{18}O-enriched SrTi^{18}O_{3} samples. In most temperature ranges, the magnitude of thermal Hall conductivity (κ_{xy}) in SrTi^{18}O_{3} is proportional to the magnitude of the longitudinal thermal conductivity (κ_{xx}), which suggests a phonon-mediated thermal Hall effect. However, they deviate in the temperature of their maxima, and the thermal Hall angle ratio (|κ_{xy}/κ_{xx}|) shows anomalously decreasing behavior below the ferroelectric Curie temperature T_{c}∼25 K. This observation suggests a new underlying mechanism, as the conventional scenario cannot explain such differences within the slight change in phonon spectrum. Notably, the difference in magnitude of thermal Hall conductivity and rapidly decreasing thermal Hall angle ratio in SrTi^{18}O_{3} is correlated with the strength of quantum critical fluctuations in this displacive ferroelectric. This relation points to a link between the quantum critical physics of strontium titanate and its thermal Hall effect, a possible clue to explain this example of an exotic phenomenon in nonmagnetic insulating systems.

3.
Nanotechnology ; 32(31)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33892483

RESUMO

Hexagonal boron nitride (hBN) is one of the most suitable 2D materials for supporting graphene in electronic devices, and it plays a fundamental role in screening out the effect of charge impurities in graphene in contrast to inhomogeneous supports such as silicon dioxide (SiO2). Although many interesting surface science techniques such as scanning tunneling microscopy (STM) revealed dielectric screening by hBN and emergent physical phenomena were observed, STM is only appropriate for graphene electronics. In this paper, we demonstrate the dielectric screening by hBN in graphene integrated on a silicon photonic waveguide from the perspective of a near-field scanning optical microscopy (NSOM) and Raman spectroscopy. We found shifts in the Raman spectra and about three times lower slope decrease in the measured electric near-field amplitude for graphene on hBN relative to that for graphene on SiO2. Based on finite-difference time-domain simulations, we confirm lower electric field slope and scattering rate in graphene on hBN, which implies dielectric screening, in agreement with the NSOM signal. Graphene on hBN integrated on silicon photonics can pave the way for high-performance hybrid graphene photonics.

4.
Nano Lett ; 20(8): 5837-5843, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628851

RESUMO

Grain boundaries (GBs) are ubiquitous in solids and have been of central importance in understanding the nature of polycrystals. In addition to their classical roles, topological insulators (TIs) offer a chance to realize GBs hosting distinct topological states that can be controlled by their crystal symmetries. However, such roles of crystalline symmetry in two-dimensional (2D) TIs have not been definitively measured yet. Here, we present the first direct evidence of a symmetry-enforced metallic state along a GB in 1T'-MoTe2, a prototypical 2D TI. Using scanning tunneling microscopy, we show a metallic state along a GB with nonsymmorphic lattice symmetry and its absence along another boundary with symmorphic symmetry. Our atomistic simulations demonstrate in-gap Weyl semimetallic states for the former, whereas they demonstrate gapped states for the latter, explaining our observation well. The observed metallic state, tightly linked to its crystal symmetry, can be used to create a stable conducting nanowire inside TIs.

5.
Nano Lett ; 19(1): 61-68, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30575401

RESUMO

The quantum confinement of charge carriers has been a promising approach to enhance the efficiency of thermoelectric devices, by lowering the dimension of materials and raising the boundary phonon scattering rate. The role of quantum confinement in thermoelectric efficiency has been investigated by using macroscopic device-scale measurements based on diffusive electron transport with the thermal de Broglie wavelength of the electrons. Here, we report a new class of thermoelectric operation originating from quasi-bound state electrons in low-dimensional materials. Coherent thermoelectric power from confined charges was observed at room temperature in graphene quantum dots with diameters of several nanometers. The graphene quantum dots, electrostatically defined as circular n-p-n junctions to isolate charges in the p-type graphene quantum dots, enabled thermoelectric microscopy at the atomic scale, revealing weakly localized and coherent thermoelectric power generation. The conceptual thermoelectric operation provides new insights, selectively enhancing coherent thermoelectric power via resonant states of charge carriers in low-dimensional materials.

6.
Appl Opt ; 58(27): 7503-7509, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674401

RESUMO

Surface plasmon polaritons (SPPs) are surface modes confined to metal-dielectric interfaces. This confinement enhances the electromagnetic field and therefore, SPPs are sensitive to surface conditions. The properties of two dimensional materials such as graphene thus can be enhanced and used to engineer nanoscale components for optical communications. However, SPPs are transverse magnetic modes with electric fields out-of-plane that limit flexibility. In this contribution, we numerically analyze the confinement and in-plane enhancement in graphene-based hybrid plasmonic waveguides. We find that plasmonic modes supported by metal nanoparticle chain waveguides provide higher in-plane enhancement compared to those supported by nano-strip and slot hybrid plasmonic waveguides. Our results contribute to the performance improvement of graphene light absorption devices, including electro-optic modulators and photodetectors.

7.
Nano Lett ; 18(5): 3229-3234, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29668290

RESUMO

Synaptic computation, which is vital for information processing and decision making in neural networks, has remained technically challenging to be demonstrated without using numerous transistors and capacitors, though significant efforts have been made to emulate the biological synaptic transmission such as short-term and long-term plasticity and memory. Here, we report synaptic computation based on Joule heating and versatile doping induced metal-insulator transition in a scalable monolayer-molybdenum disulfide (MoS2) device with a biologically comparable energy consumption (∼10 fJ). A circuit with our tunable excitatory and inhibitory synaptic devices demonstrates a key function for realizing the most precise temporal computation in the human brain, sound localization: detecting an interaural time difference by suppressing sound intensity- or frequency-dependent synaptic connectivity. This Letter opens a way to implement synaptic computing in neuromorphic applications, overcoming the limitation of scalability and power consumption in conventional CMOS-based neuromorphic devices.

8.
Nano Lett ; 17(6): 3363-3368, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28488868

RESUMO

Doping two-dimensional (2D) semiconductors beyond their degenerate levels provides the opportunity to investigate extreme carrier density-driven superconductivity and phase transition in 2D systems. Chemical functionalization and the ionic gating have achieved the high doping density, but their effective ranges have been limited to ∼1 nm, which restricts the use of highly doped 2D semiconductors. Here, we report on electron diffusion from the 2D electride [Ca2N]+·e- to MoTe2 over a distance of 100 nm from the contact interface, generating an electron doping density higher than 1.6 × 1014 cm-2 and a lattice symmetry change of MoTe2 as a consequence of the extreme doping. The long-range lattice symmetry change, suggesting a length scale surpassing the depletion width of conventional metal-semiconductor junctions, was a consequence of the low work function (2.6 eV) with highly mobile anionic electron layers of [Ca2N]+·e-. The combination of 2D electrides and layered materials yields a novel material design in terms of doping and lattice engineering.

9.
Small ; 13(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27748996

RESUMO

Defects in bulk crystals can be classified into vacancies, interstitials, grain boundaries, stacking faults, dislocations, and so forth. In particular, the vacancy in semiconductors is a primary defect that governs electrical transport. Concentration of vacancies depends mainly on the growth conditions. Individual vacancies instead of aggregated vacancies are usually energetically more favorable at room temperature because of the entropy contribution. This phenomenon is not guaranteed in van der Waals 2D materials due to the reduced dimensionality (reduced entropy). Here, it is reported that the 1D connected/aggregated vacancies are energetically stable at room temperature. Transmission electron microscopy observations demonstrate the preferential alignment direction of the vacancy chains varies in different 2D crystals: MoS2 and WS2 prefer 〈2¯11〉 direction, while MoTe2 prefers 〈1¯10〉 direction. This difference is mainly caused by the different strain effect near the chalcogen vacancies. Black phosphorous also exhibits directional double-chain vacancies along 〈01〉 direction. Density functional theory calculations predict that the chain vacancies act as extended gap (conductive) states. The observation of the chain vacancies in 2D crystals directly explains the origin of n-type behavior in MoTe2 devices in recent experiments and offers new opportunities for electronic structure engineering with various 2D materials.

10.
Dermatol Surg ; 41(1): 87-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25521099

RESUMO

BACKGROUND: Deactivation of the corrugator supercilii for the treatment of unintentional glabellar lines requires high selectivity to avoid sensory complications. OBJECTIVE: The aim of this study was to delineate the topographic anatomy of facial and trigeminal nerves in relation to the corrugator supercilii to improve the selectivity and safety of deactivation of the corrugator supercilii muscle. MATERIALS AND METHODS: The number, courses, and attachments of the facial nerve to the corrugator supercilii muscle were investigated by dissection of 27 cadaveric hemifaces. Twelve cadaveric hemiforehead flaps were stained using a modified Sihler method to trace the supraorbital and supratrochlear branches. RESULTS: On average, 1.8 branches of the facial nerve at the zygomatic arch were associated with the corrugator supercilii muscle through 1 (29.3%) or 2 terminal rami (70.7%). The trigeminal nerve gave off 7.7 supraorbital and 5.1 supratrochlear branches emerging from orbit. The majority of the supraorbital branches became intramuscular branches (60.4%), whereas the majority of the supratrochlear branches became superficial branches (67.8%). CONCLUSION: Resection of the muscle may damage the intramuscular trigeminal branches, leading to sensory changes. The course of the facial nerve branches to the corrugator supercilii muscle was much more predictable at their distal part than the proximal part.


Assuntos
Nervo Facial/anatomia & histologia , Testa/inervação , Músculo Esquelético/inervação , Nervo Trigêmeo/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Corantes , Feminino , Humanos , Masculino , Microdissecção , Pessoa de Meia-Idade , Ritidoplastia , Envelhecimento da Pele , Coloração e Rotulagem/métodos
11.
J Korean Med Sci ; 30(4): 502-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829821

RESUMO

Although numerous reports have found accessory or supernumerary muscles throughout the human body, multiple appearances of these variations biased toward one side of body are rare. We report a 76-yr-old male cadaver with an accessory head of the biceps brachii and palmaris profundus, and a muscular slip between the biceps femoris and semitendinosus on the left side in addition to a bilateral accessory belly of the digastric muscle. No remarkable nervous, vascular, or visceral variation accompanied these variations. An interruption of normal somitogenesis or myogenesis may be a cause of these variations.


Assuntos
Músculo Esquelético/patologia , Idoso , Cadáver , Humanos , Extremidade Inferior , Masculino , Pescoço , Extremidade Superior
12.
Environ Monit Assess ; 187(1): 4187, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467417

RESUMO

Observations of water levels in coastal aquifers and corresponding tides coupled with meteorological variances near the Ariake Sea show that groundwater in this area mainly fluctuates with atmospheric and tidal variations. Tidal effects occur with semi-monthly, diurnal, or semi-diurnal periodicity, whereas the barometric influences commonly act in the low-frequency domain. Tidal and barometric effects in water levels are separable using wavelet techniques and can be evaluated statistically. Results show the following. (1) The tidal coefficients are 0.002-0.154, attenuating roughly exponentially from the seashore. The time lags in water levels increase linearly approximately with increasing inshore distance. Relations between tidal coefficients and time lags and the inshore distance indicate higher hydraulic diffusivity in the south aquifer, which was confirmed by the hydraulic property calibrations in analytical simulations. (2) Water levels related to meteorological phenomena fluctuate inversely according to barometric loading variation with time lags of 2-3 h. The effective barometric efficiencies are 0.022-0.12. Lower barometric influences were found in the south aquifer.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Abastecimento de Água/análise , Conceitos Meteorológicos , Oceanos e Mares , Tempo , Movimentos da Água , Abastecimento de Água/estatística & dados numéricos
13.
Proc Natl Acad Sci U S A ; 108(46): 18622-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22049340

RESUMO

We investigate the roles of the pseudospin and the valley degeneracy in electron scattering at graphene edges. It is found that they are strongly correlated with charge density modulations of short-wavelength oscillations and slowly decaying beat patterns in the electronic density profile. Theoretical analyses using nearest-neighbor tight-binding methods and first-principles density-functional theory calculations agree well with our experimental data from scanning tunneling microscopy. The armchair edge shows almost perfect intervalley scattering with pseudospin invariance regardless of the presence of the hydrogen atom at the edge, whereas the zigzag edge only allows for intravalley scattering with the change in the pseudospin orientation. The effect of structural defects at the graphene edges is also discussed.


Assuntos
Grafite/química , Química/métodos , Cristalização , Eletroquímica/métodos , Eletrônica , Hidrogênio/química , Íons , Cinética , Modelos Químicos , Modelos Teóricos , Oscilometria/métodos , Espalhamento de Radiação
14.
Nano Lett ; 13(9): 4001-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23978262

RESUMO

The rectifying Schottky characteristics of the metal-semiconductor junction with high contact resistance have been a serious issue in modern electronic devices. Herein, we demonstrated the conversion of the Schottky nature of the Ni-Si junction, one of the most commonly used metal-semiconductor junctions, into an Ohmic contact with low contact resistance by inserting a single layer of graphene. The contact resistance achieved from the junction incorporating graphene was about 10(-8) ~ 10(-9) Ω cm(2) at a Si doping concentration of 10(17) cm(-3).

15.
Sci Rep ; 14(1): 1262, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218996

RESUMO

This study investigated the anatomical details of the axillary and radial nerves in 50 upper limbs from 29 adult formalin-embalmed cadavers, and ten fresh upper limbs. The focus was on understanding the course, division, and ramifications of these nerves to improve treatment of shoulder dysfunction caused by axillary nerve damage. The axillary nerve divided anteriorly and posteriorly before passing the quadrangular space in all specimens, with specific distances to the first ramifications. It was found that the deltoid muscle's clavicular and acromial parts were always innervated by the anterior division of the axillary nerve, whereas the spinous part was variably innervated. The longest and thickest branches of the radial nerve to the triceps muscles were identified, with no statistically significant differences in fiber numbers among triceps branches. The study concludes that nerve transfer to the anterior division of the axillary nerve can restore the deltoid muscle in about 86% of shoulders, and the teres minor muscle can be restored by nerve transfer to the posterior division. The medial head branch and long head branch of radial nerve were identified as the best donor options.


Assuntos
Transferência de Nervo , Traumatismos dos Nervos Periféricos , Lesões do Ombro , Adulto , Humanos , Nervo Radial/cirurgia , Nervo Radial/anatomia & histologia , Ombro , Axila , Músculo Esquelético/inervação , Traumatismos dos Nervos Periféricos/cirurgia , Cadáver
16.
Nat Commun ; 15(1): 243, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172119

RESUMO

The thermal Hall effect in magnetic insulators has been considered a powerful method for examining the topological nature of charge-neutral quasiparticles such as magnons. Yet, unlike the kagome system, the triangular lattice has received less attention for studying the thermal Hall effect because the scalar spin chirality cancels out between adjacent triangles. However, such cancellation cannot be perfect if the triangular lattice is distorted. Here, we report that the trimerized triangular lattice of multiferroic hexagonal manganite YMnO3 produces a highly unusual thermal Hall effect under an applied magnetic field. Our theoretical calculations demonstrate that the thermal Hall conductivity is related to the splitting of the otherwise degenerate two chiralities of its 120˚ magnetic structure. Our result is one of the most unusual cases of topological physics due to this broken Z2 symmetry of the chirality in the supposedly paramagnetic state of YMnO3, due to strong topological spin fluctuations with the additional intricacy of a Dzyaloshinskii-Moriya interaction.

17.
Adv Mater ; 36(15): e2310291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235929

RESUMO

Spin-polarized bands in pristine and proximity-induced magnetic materials are promising building blocks for future devices. Conceptually new memory, logic, and neuromorphic devices are conceived based on atomically thin magnetic materials and the manipulation of their spin-polarized bands via electrical and optical methods. A critical remaining issue is the direct probe and the optimized use of the magnetic coupling effect in van der Waals heterostructures, which requires further delicate design of atomically thin magnetic materials and devices. Here, a spin-selective memtransistor with magnetized single-layered graphene on a reactive antiferromagnetic material, CrI3, is reported. The spin-dependent hybridization between graphene and CrI3 atomic layers enables the spin-selective bandgap opening in the single-layered graphene and the electric field control of magnetization in a specific CrI3 layer. The microscopic working principle is clarified by the first-principles calculations and theoretical analysis of the transport data. Reliable memtransistor operations (i.e., memory and logic device-combined operations), as well as a spin-selective probe of Landau levels in the magnetized graphene, are achieved by using the subtle manipulation of the magnetic proximity effect via electrical means.

18.
Adv Mater ; : e2402040, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798189

RESUMO

Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.

19.
ACS Nano ; 18(16): 10758-10767, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598699

RESUMO

Neural networks are increasingly used to solve optimization problems in various fields, including operations research, design automation, and gene sequencing. However, these networks face challenges due to the nondeterministic polynomial time (NP)-hard issue, which results in exponentially increasing computational complexity as the problem size grows. Conventional digital hardware struggles with the von Neumann bottleneck, the slowdown of Moore's law, and the complexity arising from heterogeneous system design. Two-dimensional (2D) memristors offer a potential solution to these hardware challenges, with their in-memory computing, decent scalability, and rich dynamic behaviors. In this study, we explore the use of nonvolatile 2D memristors to emulate synapses in a discrete-time Hopfield neural network, enabling the network to solve continuous optimization problems, like finding the minimum value of a quadratic polynomial, and tackle combinatorial optimization problems like Max-Cut. Additionally, we coupled volatile memristor-based oscillators with nonvolatile memristor synapses to create an oscillatory neural network-based Ising machine, a continuous-time analog dynamic system capable of solving combinatorial optimization problems including Max-Cut and map coloring through phase synchronization. Our findings demonstrate that 2D memristors have the potential to significantly enhance the efficiency, compactness, and homogeneity of integrated Ising machines, which is useful for future advances in neural networks for optimization problems.

20.
Adv Mater ; : e2403783, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023001

RESUMO

In 2D noble metals like copper, the carrier scattering at grain boundaries has obscured the intrinsic nature of electronic transport. However, it is demonstrated that the intrinsic nature of transport by hole carriers in 2D copper can be revealed by growing thin films without grain boundaries. As even a slight deviation from the twin boundary is perceived as grain boundaries by electrons, it is only through the thorough elimination of grain boundaries that the hidden hole-like attribute of 2D single-crystal copper can be unmasked. Two types of Fermi surfaces, a large hexagonal Fermi surface centered at the zone center and the triangular Fermi surface around the zone corner, tightly matching to the calculated Fermi surface topology, confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and vivid nonlinear Hall effects of the 2D single-crystal copper account for the presence of hole carriers experimentally. This breakthrough suggests the potential to manipulate the majority carrier polarity in metals by means of grain boundary engineering in a 2D geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA