Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3384-3387, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875626

RESUMO

Acoustic sensitive optical cables (ASOCs) and their shape detection are vital in underwater acoustic monitoring, and a distributed ASOC shape detection method is demonstrated with distributed acoustic sensing (DAS) technology. The accurate three-dimensional (3D) position of each ASOC unit is obtained from DAS signals and the prior position information of auxiliary acoustic sources by using a proposed adaptive peak allocation algorithm. Preliminary work has demonstrated single-point 3D localization and distributed ASOC shape detection, and the error is 6.53 cm. To the best of our knowledge, it is the first time that distributed ASOC shape detection is achieved with DAS. This method will promote the development of ASOC applications, such as underwater target detection and towed array correction.

2.
Appl Opt ; 62(2): 342-347, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630232

RESUMO

Mountain dynamic response monitoring plays important roles in geological disaster evolution monitoring and warning. A distributed mountain seismic monitoring and steady-state analysis method is demonstrated with distributed acoustic sensing (DAS) and a natural earthquake stimulus. In the field test, the seismic detection capability is first verified by comparing the recorded seismic waveforms from DAS and existing seismic stations. The vibration signal difference between steady-state and unsteady-state mountain parts is apparent; the operational modal analysis method is utilized to extract the response difference and to monitor the disaster evolution process. The proposed method has many advantages, including being easy to deploy, all-weather online monitoring, etc. It is believed that the proposed method will broaden the DAS application scope and promote the development of geological disaster early warning such as landslides and collapses.

3.
Cell Biol Int ; 46(11): 1825-1833, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35979647

RESUMO

Identifying novel curative and preventive approaches that can specifically target the osteosarcoma cells (OS) without affecting the normal cells is appreciable. The aim of this study is to investigate the combined effect of chrysin as an apigenin analog with high therapeutic potential and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the treatment of Saos-2 and MG-63 cells. Cell viability were determined using MTT method. The rate of apoptosis was assessed by enzyme-linked immunosorbent assay (ELISA) cell death assay and caspase 8 activity assays. The messenger RNA (mRNA) and protein evaluation of candidate genes include Bcl-2, XIAP, c-IAP1, c-IAP2, and c-FLIP were accomplished before and after the treatment by quantitative real-time polymerase chain reaction (PCR) and Western blot analysis, respectively. Our results showed that chrysin synergistically increased the cytotoxic effects of TRAIL as follows: Chrysin plus TRAIL > TRAIL > Chrysin. Chrysin could sensitize both cells against the TRAIL-induced apoptosis, amplify the caspase 8 activity and this outcome is achieved by decreasing the expression levels of antiapoptotic genes. Our findings suggest that Chrysin can sensitize the OS cell lines against TRAIL through induction of the death receptor pathway. Moreover, the combinational therapy of these agents might be the promising therapeutic regimen for improving the clinical efficacy of TRAIL-induced apoptosis in patients with OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Apigenina/farmacologia , Apoptose , Neoplasias Ósseas/patologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Flavonoides , Humanos , Ligantes , Osteossarcoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Receptores de Morte Celular/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Environ Sci Technol ; 56(20): 14306-14314, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36172692

RESUMO

Cement production is a major contributor to carbon dioxide (CO2) and multiple hazardous air pollutant (HAP) emissions, threatening climate mitigation and urban/regional air quality improvement. In this study, we established a comprehensive emission inventory by coupling the unit-based bottom-up and mass balance methods, revealing that emissions of most HAPs have been remarkably controlled. However, an increasing 6.0% of atmospheric mercury emissions, as well as 14.1 and 23.7% of fuel-related and process-related CO2 emission growth were witnessed unexpectedly. Industrial adjustment policies have imposed a great impact on the spatiotemporal changes in emission characteristics. Monthly emissions of CO2 and multiple HAPs decreased from December to February due to the "staggered peak production," especially in northern China after implementing the intensified action plan for air pollution control in winter. Upgrading environmental technologies and adjusting capacity structures are identified as dominant driving forces for reducing HAP emissions. Besides, energy intensity improvement can help offset some of the impact caused by the increase in clinker/cement production. Furthermore, scenario analysis results show that ultra-low emission and low-carbon technology transformation constitute the keys to achieve the synergic reduction of CO2 and multiple HAP emissions in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mercúrio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono/análise , China
5.
Xenobiotica ; 52(5): 442-452, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35506342

RESUMO

1. Pomegranate peel polyphenols (PPPs) have anti-oxidation, anti-atherosclerosis, anti-obesity effects, and so on. However, few studies have been conducted on the absorption and transformation of pomegranate polyphenols in the gut and the biologically active forms that ultimately work in the body.2. In this study, PPPs (300 mg/kg/day) was given to normal rats and relatively sterile rats by gavage respectively. The relatively sterile rats were obtained by neomycin sulphate (250 mg/kg/day) gavage to rats. The purpose of this study is to elaborate on the relationship between intestinal flora and polyphenol metabolism of pomegranate peel and to quantitatively analyse the transformation process of its metabolite urolithin in rats.3. The results showed that decreased bacterial diversity could significantly reduce the abundance of PPPs metabolites in faeces and urine in relatively sterile rats. PPPs can regulate intestinal flora structure, significantly enhance the content of Clostrida Firmicutes (P < 0.05), and effectively promote acetic acid, propionic acid, butyric acid, iso-butyric acid and valeric acid production in the rat (P < 0.05 or P < 0.01 or P < 0.001). PPPs can significantly elevate the relative proportion of Ruminococcaceae (P < 0.05). Ruminococcaceae_NK4A214_group, Ruminococcaceae_UCG-014 and Ruminococcaceae_UCG-005 can promote the metabolic transformation of PPPs and make the utilisation of Urolithin A more effective.


Assuntos
Microbioma Gastrointestinal , Lythraceae , Punica granatum , Animais , Ácido Butírico , Extratos Vegetais , Polifenóis , Ratos
6.
Opt Express ; 29(3): 3147-3162, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770920

RESUMO

In this letter, a distributed optical fiber hydrophone (DOFH) based on Φ-OTDR is demonstrated and tested in the field. The specially designed sensitized optical cable with sensitivity up to -146 dB rad/µPa/m is introduced, and an array signal processing model for DOFH is constructed to analyze the equivalence and specificity of the distributed array of acoustic sensors. In the field test, a 104-meter-long optical cable and a Φ-OTDR system based on heterodyne coherent detection (Het Φ-OTDR) is utilized, and underwater acoustic signal spatial spectrum estimation, beamforming and motion trajectory tracking with high accuracy can be realized. As far as we know, this is the first report on the field trial of DOFH based on Φ-OTDR. The DOFH has the potential to achieve an array range of tens of kilometers, with elements spaced up to the meter level and flexible configuration, which has a broad application prospect for marine acoustic detection.

7.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833536

RESUMO

Phase-sensitive optical time domain reflectometer (Φ-OTDR) has attracted attention in scientific research and industry because of its distributed dynamic linear response to external disturbances. However, the signal-to-noise ratio (SNR) of Φ-OTDR is still a limited factor by the weak Rayleigh Backscattering coefficient. Here, the multi-transverse modes heterodyne matched-filtering technology is proposed to improve the system SNR. The capture efficiency and nonlinear threshold are increased with multiple transverse modes in few-mode fibers; the incident light energy is permitted to be enlarged by a wider probe pulse by using heterodyne matched-filtering without spatial resolution being deteriorated. As far as we know, this is the first time that both multi-transverse modes integration method and digital heterodyne matched filtering method have been used to improve the SNR of Φ-OTDR simultaneously. Experimental results show that the noise floor is reduced by 11.4 dB, while the target signal is kept. We believe that this proposed method will help DAS find important applications in marine acoustic detection and seismic detection.

8.
Opt Lett ; 45(20): 5672-5675, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057255

RESUMO

Distributed fiber acoustic sensing (DAS) can detect almost all disturbances along the sensing fiber and is widely applied. However, the signals from multiple adjacent disturbance sources are superimposed, according to the sensing principle. A directionally coherent enhancement technology is demonstrated for DAS to suppress multi-source aliasing in air. In preliminary works, two situations are considered for feasibility verification. The submerged weak target signal is effectively extracted from strong broadband noise, and two different same-frequency signals from two sources are separately rebuilt with the same detected signal. As far as we know, this is the first time that the directionally coherent enhancement is proposed for DAS and the multi-source aliasing is suppressed. This technique will help DAS find new important foreground in acoustic detection of large-scale plants with many similar noisy devices, including discharge detection in high voltage substations and acoustic emission flaw detection in mechanical factories.

9.
J Immunol ; 200(7): 2313-2326, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440353

RESUMO

A balance between Th17 cells and regulatory T cells (Tregs) is important for host immunity and immune tolerance. The underlying molecular mechanisms remain poorly understood. Here we have identified Cdc42 as a central regulator of Th17/Treg balance. Deletion of Cdc42 in T cells enhanced Th17 differentiation but diminished induced Treg differentiation and suppressive function. Treg-specific deletion of Cdc42 decreased natural Tregs but increased effector T cells including Th17 cells. Notably, Cdc42-deficient Th17 cells became pathogenic associated with enhanced glycolysis and Cdc42-deficient Tregs became unstable associated with weakened glycolytic signaling. Inhibition of glycolysis in Cdc42-deficient Th17 cells diminished their pathogenicity and restoration of glycolysis in Cdc42-deficient Tregs rescued their instability. Intriguingly, Cdc42 deficiency in T cells led to exacerbated wasting disease in mouse models of colitis and Treg-specific deletion of Cdc42 caused early, fatal lymphoproliferative diseases. In summary, we show that Cdc42 is a bona fide regulator of peripheral tolerance through suppression of Th17 aberrant differentiation/pathogenicity and promotion of Treg differentiation/stability/function involving metabolic signaling and thus Cdc42 pathway might be harnessed in autoimmune disease therapy.


Assuntos
Glicólise/genética , Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/imunologia , Proliferação de Células/genética , Colite/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Transtornos Linfoproliferativos/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína cdc42 de Ligação ao GTP/genética
10.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295161

RESUMO

Schistosomiasis is an immunopathogenic disease in which a T helper (Th) cell type 2-like response plays vital roles. Hepatic fibrosis is its main pathologic manifestations, which is the leading cause of hepatic cirrhosis. Co-infections of Schistosoma japonicum (Sj) with other pathogens are frequently encountered but are easily ignored in clinical studies, and effective therapeutic interventions are lacking. In this study, we explored the effect of Toxoplasma gondii (Tg) prior infection on Th1/Th2 response, community shifts in gut microbiome (GM), and the pathogenesis of schistosomiasis in murine hosts. Mice were prior infected with Tg before Sj infection. The effects of co-infection on Th1/Th2 response and hepatic fibrosis were analyzed. Furthermore, we investigated this issue by sequencing 16S rRNA from fecal specimens to define the GM profiles during co-infection. Tg prior infection markedly reduced the granuloma size and collagen deposit in livers against Sj infection. Prior infection promoted a shift toward Th1 immune response instead of Th2. Furthermore, Tg infection promoted the expansion of preponderant flora and Clostridiaceae was identified as a feature marker in the GM of the co-infection group. Redundancy analysis (RDA)/canonical correspondence analysis (CCA) results showed that liver fibrosis, Th1/Th2 cytokines were significantly correlated (P < 0.05) with the GM compositions. Tg infection inhibits hepatic fibrosis by downregulating Th2 immune response against Sj infection, and further promotes the GM shifts through "gut-liver axis" in the murine hosts. Our study may provide insights into potential anti-fibrosis strategies in co-infection individuals.


Assuntos
Microbioma Gastrointestinal , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Schistosoma japonicum , Células Th2/metabolismo , Toxoplasmose Animal/complicações , Toxoplasmose Animal/parasitologia , Animais , Biodiversidade , Coinfecção , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Cirrose Hepática/etiologia , Testes de Função Hepática , Ativação Linfocitária/imunologia , Camundongos , Simbiose , Células Th1/imunologia , Células Th1/metabolismo
11.
Clin Exp Allergy ; 49(1): 92-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307073

RESUMO

BACKGROUND: Asthma is an allergic airway inflammation-driven disease that affects more than 300 million people world-wide. Targeted therapies for asthma are largely lacking. Although asthma symptoms can be prevented from worsening, asthma development cannot be prevented. Cdc42 GTPase has been shown to regulate actin cytoskeleton, cell proliferation and survival. OBJECTIVES: To investigate the role and targeting of Cdc42 in Th2 cell differentiation and Th2-mediated allergic airway inflammation. METHODS: Post-thymic Cdc42-deficient mice were generated by crossing Cdc42flox/flox mice with dLckicre transgenic mice in which Cre expression is driven by distal Lck promoter. Effects of post-thymic Cdc42 deletion and pharmacological targeting Cdc42 on Th2 cell differentiation were evaluated in vitro under Th2-polarized culture conditions. Effects of post-thymic Cdc42 deletion and pharmacological targeting Cdc42 on allergic airway inflammation were evaluated in ovalbumin- and/or house dust mite-induced mouse models of asthma. RESULTS: Post-thymic deletion of Cdc42 led to reduced peripheral CD8+ T cells and attenuated Th2 cell differentiation, with no effect on closely related Th1, Th17 and induced regulatory T (iTreg) cells. Post-thymic Cdc42 deficiency ameliorated allergic airway inflammation. The selective inhibition of Th2 cell differentiation by post-thymic deletion of Cdc42 was recapitulated by pharmacological targeting of Cdc42 with CASIN, a Cdc42 activity-specific chemical inhibitor. CASIN also alleviated allergic airway inflammation. CASIN-treated Cdc42-deficient mice showed comparable allergic airway inflammation to vehicle-treated Cdc42-deficient mice, indicative of negligible off-target effect of CASIN. CASIN had no effect on established allergic airway inflammation. CONCLUSION AND CLINICAL RELEVANCE: Cdc42 is required for Th2 cell differentiation and allergic airway inflammation, and rational targeting Cdc42 may serve as a preventive but not therapeutic approach for asthma control.


Assuntos
Asma , Diferenciação Celular , Células Th2/imunologia , Proteína cdc42 de Ligação ao GTP , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Deleção de Genes , Camundongos , Camundongos Transgênicos , Células Th2/patologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/imunologia
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 934-941, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29305916

RESUMO

Asthma is a chronic airway inflammation in which Th2 and Th17 cells play critical roles in its pathogenesis. We have reported that atypical protein kinase (PKC) λ/ι is a new regulator for Th2 differentiation and function. However, the role of PKCλ/ι for Th17 cells remains elusive. In this study, we explored the effect of PKCλ/ι on Th17 cells in the context of ex vivo cell culture systems and an in vivo murine model of allergic airway inflammation with the use of activated T cell-specific conditional PKCλ/ι-deficient mice. Our findings indicate that PKCλ/ι regulates Th17 cells. The secretion of Th17 effector cytokines, including IL-17, IL-21 and IL-22, were inhibited from PKCλ/ι-deficient T cells under non-skewing or Th17-skewing culture conditions. Moreover, the impaired Th17 differentiation and function by the PKCλ/ι-deficiency was associated with the downregulation of Stat3 and Rorγt, key Th17 transcription factors. We developed a model of Th17 and neutrophil-involved allergic airway inflammation by intratracheal inoculation of house dust mites. PKCλ/ι-deficiency significantly inhibited airway inflammations. The infiltrating cells in the lungs and bronchoalveolar lavage fluids were significantly reduced in conditional PKCλ/ι-deficient mice. Th17 effector cytokines were reduced in the bronchoalveolar lavage fluids and lungs at protein and mRNA levels. Thus, PKCλ/ι emerges as a critical regulator of Th17 differentiation and allergic airway hyperresponsiveness.


Assuntos
Diferenciação Celular/genética , Inflamação , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória , Células Th17/fisiologia , Animais , Dermatophagoides pteronyssinus/imunologia , Embrião de Mamíferos , Feminino , Inflamação/genética , Inflamação/imunologia , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteína Quinase C/genética , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/imunologia
13.
J Allergy Clin Immunol ; 137(1): 231-245.e4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26100081

RESUMO

BACKGROUND: Mitochondrial metabolism is known to be important for T-cell activation. However, its involvement in effector T-cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T-cell activation and effector cell differentiation and function remains largely unknown. OBJECTIVE: We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for TH2 cell differentiation and TH2-mediated allergic airway inflammation. METHODS: Conditional RhoA-deficient mice were generated by crossing RhoA(flox/flox) mice with CD2-Cre transgenic mice. Effects of RhoA on TH2 differentiation were evaluated based on in vitro TH2-polarized culture conditions and in vivo in ovalbumin-induced allergic airway inflammation. Cytokine levels were measured by using intracellular staining and ELISA. T-cell metabolism was measured by using the Seahorse XF24 Analyzer and flow cytometry. RESULTS: Disruption of RhoA inhibited T-cell activation and TH2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on TH1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways, such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to TH2 cell differentiation and allergic airway inflammation through regulating IL-4 receptor mRNA expression and TH2-specific signaling events. Finally, inhibition of Rho-associated protein kinase, an immediate downstream effector of RhoA, blocked TH2 differentiation and allergic airway inflammation. CONCLUSION: RhoA is a key component of the signaling cascades leading to TH2 differentiation and allergic airway inflammation at least in part through control of T-cell metabolism and the Rho-associated protein kinase pathway.


Assuntos
Glicólise , Hipersensibilidade Respiratória/metabolismo , Células Th2/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Alérgenos/imunologia , Animais , Diferenciação Celular , Inflamação/imunologia , Inflamação/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/imunologia , Hipersensibilidade Respiratória/imunologia , Células Th2/citologia , Células Th2/imunologia , Proteína rhoA de Ligação ao GTP/deficiência , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/imunologia
14.
J Immunol ; 193(12): 5973-82, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398325

RESUMO

Thymocyte development is regulated by complex signaling pathways. How these signaling cascades are coordinated remains elusive. RhoA of the Rho family small GTPases plays an important role in actin cytoskeleton organization, cell adhesion, migration, proliferation, and survival. Nonetheless, the physiological function of RhoA in thymocyte development is not clear. By characterizing a conditional gene targeting mouse model bearing T cell deletion of RhoA, we show that RhoA critically regulates thymocyte development by coordinating multiple developmental events. RhoA gene disruption caused a strong developmental block at the pre-TCR checkpoint and during positive selection. Ablation of RhoA led to reduced DNA synthesis in CD4(-)CD8(-), CD4(+)CD8(-), and CD4(-)CD8(+) thymocytes but not in CD4(+)CD8(+) thymocytes. Instead, RhoA-deficient CD4(+)CD8(+) thymocytes showed an impaired mitosis. Furthermore, we found that abrogation of RhoA led to an increased apoptosis in all thymocyte subpopulations. Importantly, we show that the increased apoptosis was resulted from reduced pre-TCR expression and increased production of reactive oxygen species (ROS), which may be because of an enhanced mitochondrial function, as manifested by increased oxidative phosphorylation, glycolysis, mitochondrial membrane potential, and mitochondrial biogenesis in RhoA-deficient thymocytes. Restoration of pre-TCR expression or treatment of RhoA-deficient mice with a ROS scavenger N-acetylcysteine partially restored thymocyte development. These results suggest that RhoA is required for thymocyte development and indicate, to our knowledge, for the first time that fine-tuning of ROS production by RhoA, through a delicate control of metabolic circuit, may contribute to thymopoiesis.


Assuntos
Marcação de Genes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Antígenos de Superfície , Apoptose/genética , Apoptose/imunologia , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Sobrevivência Celular/genética , Perfilação da Expressão Gênica , Imunofenotipagem , Camundongos , Camundongos Knockout , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Recombinação V(D)J , Proteína rhoA de Ligação ao GTP/deficiência
15.
EMBO J ; 29(19): 3421-33, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20808283

RESUMO

Allergic airway inflammation is a disease in which T helper 2 (Th2) cells have a critical function. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. Recently, a network of PB1-containing adapters and kinases has been shown to be essential in this process owing to its function in regulating cell polarity and the activation of critical transcription factors. Here, we show in vivo data showing that T-cell-specific NBR1-deficient mice show impaired lung inflammation and have defective Th2 differentiation ex vivo with alterations in T-cell polarity and the selective inhibition of Gata3 and nuclear factor of activated T c1 activation. These results establish NBR1 as a novel PB1 adapter in Th2 differentiation and asthma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/imunologia , Proteínas/metabolismo , Hipersensibilidade Respiratória/imunologia , Transdução de Sinais/fisiologia , Células Th2/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Compostos de Alúmen/toxicidade , Animais , Western Blotting , Polaridade Celular/imunologia , Citometria de Fluxo , Imunofluorescência , Fator de Transcrição GATA3/antagonistas & inibidores , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Ovalbumina/toxicidade , Reação em Cadeia da Polimerase , Proteínas/genética , Proteínas/imunologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/genética , Células Th2/fisiologia
16.
Front Plant Sci ; 15: 1341831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384766

RESUMO

Diseases cause crop yield reduction and quality decline, which has a great impact on agricultural production. Plant disease recognition based on computer vision can help farmers quickly and accurately recognize diseases. However, the occurrence of diseases is random and the collection cost is very high. In many cases, the number of disease samples that can be used to train the disease classifier is small. To address this problem, we propose a few-shot disease recognition algorithm that uses supervised contrastive learning. Our algorithm is divided into two phases: supervised contrastive learning and meta-learning. In the first phase, we use a supervised contrastive learning algorithm to train an encoder with strong generalization capabilities using a large number of samples. In the second phase, we treat this encoder as an extractor of plant disease features and adopt the meta-learning training mechanism to accomplish the few-shot disease recognition tasks by training a nearest-centroid classifier based on distance metrics. The experimental results indicate that the proposed method outperforms the other nine popular few-shot learning algorithms as a comparison in the disease recognition accuracy over the public plant disease dataset PlantVillage. In few-shot potato leaf disease recognition tasks in natural scenarios, the accuracy of the model reaches the accuracy of 79.51% with only 30 training images. The experiment also revealed that, in the contrastive learning phase, the combination of different image augmentation operations has a greater impact on model. Furthermore, the introduction of label information in supervised contrastive learning enables our algorithm to still obtain high accuracy in few-shot disease recognition tasks with smaller batch size, thus allowing us to complete the training with less GPU resource compared to traditional contrastive learning.

17.
Sci Total Environ ; 947: 174304, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945240

RESUMO

Volatile organic compounds (VOCs) are key precursors for secondary organic aerosols (SOA) and ozone, imposing severe impacts on human health and environment. Considering the massive coal consumption, coal fired power plants (CFPPs) in China are non-negligible VOCs contributors, whose emission characteristics remain inadequately understood. Here, we investigated emission characteristics of 117 VOCs by field tests in four typical CFPPs, and a latest localized CFPPs source profile was compiled by integrating literature reviews. Then speciated-VOCs emission inventories for 2018-2022 were established based on dynamic emission factors and unit-level activity data. The results suggested that oxygenated VOCs (OVOCs) constituted the dominant group (76.5 %), with propionaldehyde (32.0 %) and formaldehyde (24.5 %) being the predominant species. OVOCs (93.2 %) and aromatics (77.4 %) were identified as the primary contributors to ozone and SOA, respectively. Driven by both the rise in coal consumption and technological advancements, nationwide VOCs emissions decreased from 83,393 t in 2018 to 53,251 t in 2022. Regional disparities and varying rates of decline in provincial emissions were evident, with VOCs emissions predominantly concentrated in northern and eastern provinces. Neimenggu, Shandong, Shanxi, Jiangsu, and Guangdong were identified as the top five provinces with the highest emissions. We believe this study would be conducive to a more comprehensive understanding and effective control of VOCs emissions from CFPPs in China.

18.
Haematologica ; 98(9): 1353-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23716557

RESUMO

mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis.


Assuntos
Marcação de Genes/métodos , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Serina-Treonina Quinases TOR/fisiologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Camundongos Knockout , Camundongos SCID
19.
J Immunol ; 186(3): 1512-20, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209282

RESUMO

Autoantibody production is a hallmark of autoimmune diseases, such as lupus and rheumatoid arthritis. Accumulating evidence suggests a role of invariant NKT (iNKT) cells in their pathogenesis. Mechanisms underlying the role of iNKT cells in these diseases, however, remain unclear. In this study, we show that iNKT cells suppress IgG anti-DNA Ab and rheumatoid factor production and reduce IL-10-secreting B cells in a contact-dependent manner, but increase total IgG production and enhance activation markers on B cells via soluble factors. In vivo reconstitution with iNKT cells also reduces autoantibody production in iNKT-deficient mice and in SCID mice implanted with B cells. Using an anti-DNA transgenic model, we found that autoreactive B cells spontaneously produce IL-10 and are activated in vivo. In the presence of activated iNKT cells, these autoreactive B cells are selectively reduced, whereas nonautoreactive B cells are markedly activated. Because iNKTs recognize CD1d, we reasoned that CD1d might play a role in the differential regulation of autoreactive versus nonautoreactive B cells by iNKT cells. Indeed, autoreactive B cells express more CD1d than nonautoreactive B cells, and CD1d deficiency in lupus mice exacerbates autoantibody production and enhances Ab response to a self-peptide but not to a foreign peptide. Importantly, iNKT cells fail to inhibit autoantibody production by CD1d-deficient B cells. Thus, iNKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner but activate nonautoreactive B cells via cytokines. Such ability of iNKTs to suppress autoantibody production, without causing global suppression of B cells, has important implications for the development of iNKT-based therapy for autoimmune diseases.


Assuntos
Antígenos CD1d/fisiologia , Autoanticorpos/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Adesão Celular/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Autoanticorpos/biossíntese , Adesão Celular/genética , Galactosilceramidas/farmacologia , Imunoglobulina G/metabolismo , Imunossupressores/farmacologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Células T Matadoras Naturais/metabolismo
20.
Cell Rep ; 42(4): 112364, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043352

RESUMO

The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/patologia , Imunoterapia/métodos , Transdução de Sinais , Inflamação/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA