Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273576

RESUMO

Crop residue-derived carbon (C) emissions and priming effects (PE) in cropland soils can influence the global C cycle. However, their corresponding generality, driving factors, and responses to nitrogen (N) inputs are poorly understood. As a result, the total C emissions and net C balance also remain mysterious. To address the above knowledge gaps, a meta-analysis of 1123 observations, taken from 51 studies world-wide, has been completed. The results showed that within 360 days, emission ratios of crop residues C (ER) ranged from 0.22% to 61.80%, and crop residues generally induced positive PE (+71.76%). Comparatively, the contribution of crop residue-derived C emissions (52.82%) to total C emissions was generally higher than that of PE (12.08%), emphasizing the importance of reducing ER. The ER and PE differed among crop types, and both were low in the case of rice, which was attributed to its saturated water conditions. The ER and PE also varied with soil properties, as PE decreased with increasing C addition ratio in soils where soil organic carbon (SOC) was less than 10‰; in contrast, the opposite phenomenon was observed in soils with SOC exceeding 10‰. Moreover, N inputs increased ER and PE by 8.31% and 3.78%, respectively, which was predominantly attributed to (NH4 )2 SO4 . The increased PE was verified to be dominated by microbial stoichiometric decomposition. In summary, after incorporating crop residues, the total C emissions and relative net C balance in the cropland soils ranged from 0.03 to 23.47 mg C g-1 soil and 0.21 to 0.97 mg C g-1 residue-C g-1 soil, respectively, suggesting a significant impact on C cycle. These results clarify the value of incorporating crop residues into croplands to regulate global SOC dynamics and help to establish while managing site-specific crop return systems that facilitate C sequestration.


Assuntos
Oryza , Solo , Solo/química , Carbono , Nitrogênio/análise , Agricultura/métodos
2.
Environ Sci Technol ; 58(16): 7066-7077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597811

RESUMO

Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 µmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.


Assuntos
Carbono , Espécies Reativas de Oxigênio , Estações do Ano , Solo , Solo/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
3.
Water Res ; 255: 121516, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552490

RESUMO

Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.

4.
Sci Total Environ ; 853: 158571, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075414

RESUMO

Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.


Assuntos
Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Poluentes do Solo/análise , Espécies Reativas de Oxigênio/metabolismo , Solo/química , Argila , Antioxidantes/metabolismo , Radicais Livres/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Antracenos/toxicidade , Antracenos/metabolismo , Biomarcadores/metabolismo , Antraquinonas/metabolismo , Lipídeos de Membrana
5.
Bioresour Technol ; 293: 122095, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494435

RESUMO

The aim of this study was to remove heavy metals from composting system using a novel method combined functional bacteria with adsorbent materials. Four types of adsorbent materials were selected in this study. Results showed that Cr had significant removal efficiency, especially in sponge treatment (19.09%) and cotton treatment (26.36%). In addition, a significant movement of heavy metals from the outside to adsorbent column was also observed. RDA results indicated that bands 1, 2, 10, 18, 19 and 20 had negative correlations with six types of heavy metals, which contributed to the removal of heavy metals. Structural equation models further confirmed functional bacteria can directly affect the removal of Cu, Cd and Cr. In addition, it can also indirectly remove Pb and Cr by changing native bacteria. In summary, this study suggested the combination of functional bacteria and adsorbent materials was effective to remove heavy metals from composting system.


Assuntos
Compostagem , Metais Pesados , Bactérias
6.
Environ Pollut ; 250: 166-174, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30995570

RESUMO

Mobile genetic elements (MGEs) play critical roles in transferring antibiotic resistance genes (ARGs) among different microorganisms in the environment. This study aimed to explore the fate of MGEs during chicken manure (CM) and bovine manure (BM) composting to assess horizontal transfer risks of ARGs. The results showed that the removal efficiency of MGEs during CM composting was significantly higher than that during BM composting, because the potential host bacteria of MGEs were eliminated largely during CM composting. Meanwhile, these potential host bacterial communities are significantly influenced by pH, NH4+, NO3- and total N, which can be used to regulate host bacterial communities to remove MGEs during composting. Projection pursuit regression further confirmed that composting can effectively reduce the horizontal transfer risk of ARGs, especially for CM composting. These results identified the critical roles of host bacterial communities in MGEs removal during composting of different animal manures.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Esterco/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bovinos , Galinhas , Compostagem , Genes Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA