Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 59(35): 11080-11086, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33361936

RESUMO

We propose a dual shearing shearography system based on a spatial light modulator (SLM). Compared to spatial phase shift shearography, the advantages of this system include its simple structure, relatively high light efficiency, and good phase map quality. Digital shearography is a fast, practical, non-contact, whole-field, and anti-turbulent optical approach to non-destructive testing (NDT) and strain measurement. Because the shearing direction determines the strain direction being measured, tests using multiple shearing directions are sometimes required to obtain strain in different directions and detect all defects. Various setups, based on the spatial phase shift method, have been proposed to solve the issue. While some of these setups perform well, they may also introduce new problems, such as poor phase map quality and low light efficiency. We present a sequential dual shearing shearographic system with good phase map quality and high light efficiency. Due to the SLM's high-speed response, capable of reaching hundreds of hertz, SLM-based dual shearing direction shearography allows for fast temporal phase shifting and shearing direction switching while providing very good phase map quality. Unlike the spatial phase shift method, which has low light efficiency due to its need for a small aperture to enable a relatively large speckle size to cover multiple pixels, the proposed method is based on a fast temporal phase shift and does not have this limitation. In addition, SLM can provide a programmable and adjustable shearing method in any direction and distance, which is beneficial for strain measurements and NDT requiring strain measurements in different directions using a small and precise shearing distance. We describe in detail the theory derivation and non-destructive testing application results for the SLM-based dual shearing direction shearography system.

2.
Appl Opt ; 57(3): 414-419, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400790

RESUMO

The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

3.
Opt Lett ; 41(5): 1050-3, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974113

RESUMO

We propose a hybrid spatiotemporal three-dimensional phase unwrapping algorithm for use in digital speckle pattern interferometry (DSPI). The feature of the proposed algorithm is the integration of one-dimensional temporal and two-dimensional spatial phase unwrapping algorithms. By demodulating the phase on a single reference point or multiple reference points using temporal phase unwrapping and on each separated phase map region using spatial phase unwrapping, the DSPI with the spatiotemporal three-dimensional phase unwrapping algorithm can realize the measurement of dynamic absolute displacements and the determination of abrupt phase changes which are usually caused by object discontinuities. We demonstrate that the presented algorithm can overcome the drawbacks of the traditional spatial and temporal phase unwrapping algorithms.

4.
Appl Opt ; 52(17): 4063-71, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23759857

RESUMO

This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

5.
Appl Opt ; 50(21): 3789-94, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772360

RESUMO

Digital shearography based on Michelson interferometers suffers from the disadvantage of a small angle of view due to the structure. We demonstrate a novel digital shearography system with a large angle of view. In the optical arrangement, the imaging lens is in front of the Michelson interferometer rather than behind it as in traditional digital shearography. Thus, the angle of view is no longer limited by the Michelson interferometer. The images transmitting between the separate lens and camera are accomplished by a 4f system in the new style of shearography. The influences of the 4f system on shearography are also discussed.

6.
Bone Res ; 8: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128277

RESUMO

Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFß levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29983719

RESUMO

Pulse diagnosis is one of the four diagnostic methods of traditional Chinese medicine. However it suffers from the lack of objective and efficient detection method. We propose a noncontact optical method to detect human wrist pulse, aiming at the precise determination of the temporal and spatial distributions of pulse. The method uses the spatial-carrier digital speckle pattern interferometry (DSPI) to measure the micro/nanoscale skin displacement dynamically. Significant improvements in DSPI measurement have been made to allow the DSPI to detect the comprehensive information of the arterial pulsation at locations of Cun, Guan, and Chi. The experimental results prove that the spatiotemporal distributions of pulse can be obtained by the proposed method. The obtained data can be further used to describe most of the pulse parameters such as rate, rhythm, depth, length, width, and contour.

8.
Opt Lasers Eng ; 45(8): 843-851, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18670581

RESUMO

Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system.

9.
Rev Sci Instrum ; 87(8): 083110, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587103

RESUMO

The selection of the direction of sensitivity for digital shearography is determined by its shearing direction. As a result, directionally shaped defects could be missed in non-destructive testing using a digital shearography system with only one shearing direction. This paper reports a polarized digital shearography system based on two Mach-Zehnder interferometers, which can create two orthogonal shearing directions and record shearograms in the two orthogonal directions simultaneously. The two shearograms are separated from each other by proper polarization design so that no cross interference occurs. The phase maps of the shearograms are generated by spatial phase shift methods through the introduction of different carrier frequencies in the two orthogonal shearograms and use of the Fourier transform method. This enabled simultaneous dual directional non-destructive testing during continuous loading. Theory derivation, spectrum analysis, and non-destructive testing application results are shown in detail.

10.
Mater Eval ; 66(5): 507-512, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-21709738

RESUMO

Digital Speckle Pattern Interferometry (DSPI), originally known as electronic speckle pattern interferometry (ESPI), is an interferometry based method applicable for conducting 3-dimensional whole field strain characterization. The present DSPI systems are suited for analyzing a relatively simple surface (e.g., a plane surface). However, few existing systems are able to accurately determine strain distributions on a surface with significant contour complexity. Here, we present development of a novel DSPI system that allows strain characterization of a sample with a complex surface. In the described DSPI system, deformations and contours as well as an absolute phase value are determined. Furthermore, variations in measurement sensitivity are considered. We describe a principle and methodology using two examples in the area of mechanical engineering and biomedical engineering, and discuss potential usages and future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA