RESUMO
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Assuntos
Duplicação Gênica , Edição de Genes , Genoma Humano , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Animais , Células-Tronco Embrionárias/metabolismo , Cromossomos Humanos/genéticaRESUMO
Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.
Assuntos
Aspergillus fumigatus/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Sequência de Aminoácidos , Histona Acetiltransferases/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Especificidade por SubstratoRESUMO
Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.
Assuntos
Cromatina , Proteínas Nucleares , Animais , Cromatina/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , Reparo do DNA por Junção de Extremidades , Histonas/genética , Histonas/metabolismo , Pareamento Cromossômico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismoRESUMO
Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.
Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Envelhecimento/genética , Fatores de Transcrição/metabolismoRESUMO
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Assuntos
Poli ADP Ribosilação , Rad51 Recombinase , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga/genética , Fosforilação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismoRESUMO
An immunosuppressive tumour microenvironment is a major obstacle in the control of pancreatic and other solid cancers1-3. Agonists of the stimulator of interferon genes (STING) protein trigger inflammatory innate immune responses to potentially overcome tumour immunosuppression4. Although these agonists hold promise as potential cancer therapies5, tumour resistance to STING monotherapy has emerged in clinical trials and the mechanism(s) is unclear5-7. Here we show that the administration of five distinct STING agonists, including cGAMP, results in an expansion of human and mouse interleukin (IL)-35+ regulatory B cells in pancreatic cancer. Mechanistically, cGAMP drives expression of IL-35 by B cells in an IRF3-dependent but type I interferon-independent manner. In several preclinical cancer models, the loss of STING signalling in B cells increases tumour control. Furthermore, anti-IL-35 blockade or genetic ablation of IL-35 in B cells also reduces tumour growth. Unexpectedly, the STING-IL-35 axis in B cells reduces proliferation of natural killer (NK) cells and attenuates the NK-driven anti-tumour response. These findings reveal an intrinsic barrier to systemic STING agonist monotherapy and provide a combinatorial strategy to overcome immunosuppression in tumours.
Assuntos
Linfócitos B Reguladores , Células Matadoras Naturais , Neoplasias , Animais , Linfócitos B Reguladores/imunologia , Humanos , Imunidade Inata/imunologia , Imunoterapia , Fator Regulador 3 de Interferon , Interferon Tipo I/imunologia , Interleucinas/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Nucleotídeos Cíclicos/metabolismo , Microambiente TumoralRESUMO
Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.
Assuntos
Adipócitos , Jejum , Proteínas Plasmáticas de Ligação ao Retinol , Esterol Esterase , Vitamina A , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Animais , Vitamina A/metabolismo , Vitamina A/sangue , Jejum/metabolismo , Camundongos , Adipócitos/metabolismo , Esterol Esterase/metabolismo , Esterol Esterase/genética , Fígado/metabolismo , Tecido Adiposo/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BLRESUMO
Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.
Assuntos
Senescência Celular , Vesículas Extracelulares , Humanos , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Células HeLa , Vesículas Extracelulares/metabolismo , EnvelhecimentoRESUMO
We report, for the first time, a new synthetic strategy for the preparation of crystalline two-dimensional olefin-linked covalent organic frameworks (COFs) based on aldol condensation between benzodifurandione and aromatic aldehydes. Olefin-linked COFs can be facilely crystallized through either a pyridine-promoted solvothermal process or a benzoic anhydride-mediated organic flux synthesis. The resultant COF leaf with high in-plane π-conjugation exhibits efficient visible-light-driven photoreduction of carbon dioxide (CO2) with water (H2O) in the absence of any photosensitizer, sacrificial agents, or cocatalysts. The production rate of carbon monoxide (CO) reaches as high as 158.1 µmol g-1 h-1 with near 100% CO selectivity, which is accompanied by the oxidation of H2O to oxygen. Both theoretical and experimental results confirm that the key lies in achieving exceptional photoinduced charge separation and low exciton binding. We anticipate that our findings will facilitate new possibilities for the development of semiconducting COFs with structural diversity and functional variability.
RESUMO
BACKGROUND: We aimed to investigate the association between a diagnosis of untreated unruptured intracranial aneurysms (UIAs) and the development of mental illness. METHODS: This retrospective, propensity-score-matched cohort study was based on the nationwide South Korean database. The UIA diagnosis group included participants newly diagnosed with UIA between 2011 and 2019. For a well-matched control group, patients diagnosed with an acute upper respiratory infection but without UIA during the same period were selected through 1:4 matching based on propensity scores, which were calculated using age, sex, economic status, and comorbidities. The study's outcome measure encompassed the incidence of mental illnesses over a 10-year period, using International Classification of Diseases-Tenth Revision codes for anxiety, stress, depressive, bipolar, and eating disorders, insomnia, and alcohol or drug misuse. RESULTS: After propensity score matching, 85â 438 participants with untreated UIAs (50.75% male; average age, 56.41 [±13.82] years; follow-up, 4.21 [±2.56] years) and 331â 123 controls (49.44% males; average age, 56.69 [±12.92] years; follow-up, 7.48 [±2.12] years) were compared. Incidence rate of mental illness was higher in the UIA group (113.07 versus 90.41 per 1000 person-years; hazard ratio, 1.104 [95% CI, 1.089-1.119]). The risk of mental illness varied slightly by sex (males: hazard ratio, 1.131 [95% CI, 1.108-1.155]; females: hazard ratio, 1.082 [95% CI, 1.063-1.103]). Hazard ratios showed a U-shaped relationship with age, peaking in younger age groups, decreasing in middle-aged groups, and slightly increasing in older age groups, especially in patients with severe mental illness receiving psychotherapy. CONCLUSIONS: Our findings indicate a higher risk of mental illness in patients with UIA diagnosis in specific demographic groups, suggesting a possible psychological burden associated with UIAs. Clinicians treating cerebral aneurysms should be aware that the psychological burden caused by the diagnosis of UIA itself could contribute to mental illness and strive to provide comprehensive care for these patients.
Assuntos
Aneurisma Intracraniano , Transtornos Mentais , Humanos , Aneurisma Intracraniano/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Transtornos Mentais/epidemiologia , Idoso , República da Coreia/epidemiologia , Adulto , Estudos Retrospectivos , Pontuação de Propensão , Estudos de Coortes , Incidência , Fatores de RiscoRESUMO
BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.
Assuntos
Genoma de Planta , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Tolerância ao SalRESUMO
The development of novel soft porous crystals (SPCs) that can be transformed from nonporous to porous crystals is significant because of their promising applications in gas storage and separation. Herein, we systematically investigated for the first time the gas-triggered gate-opening behavior of three-dimensional covalent organic frameworks (3D COFs) with flexible building blocks. FCOF-5, a 3D COF containing C-O single bonds in the backbone, exhibits a unique "S-shaped" isotherm for various gases, such as CO2, C2, and C3 hydrocarbons. According to in situ characterization, FCOF-5 undergoes a pressure-induced closed-to-open structural transition due to the rotation of flexible C-O single bonds in the framework. Furthermore, the gated hysteretic sorption property of FCOF-5 can enable its use as an absorbent for the efficient removal of C3H4 from C3H4/C3H6 mixtures. Therefore, 3D COFs synthesized from flexible building blocks represent a new type of SPC with gate-opening characteristics. This study will strongly inspire us to design other 3D COF-based SPCs for interesting applications in the future.
RESUMO
Although composite solid-state electrolytes (CSEs) are considered promising ionic conductors for high-energy lithium metal batteries, their unsatisfactory ionic conductivity, low mechanical strength, poor thermal stability, and narrow voltage window limit their practical applications. We have prepared a new lithium superionic conductor (Li-HA-F) with an ultralong nanofiber structure and ultrahigh room-temperature ionic conductivity (12.6 mS cm-1). When it is directly coupled with a typical poly(ethylene oxide)-based solid electrolyte, the Li-HA-F nanofibers endow the resulting CSE with high ionic conductivity (4.0 × 10-4 S cm-1 at 30 °C), large Li+ transference number (0.66), and wide voltage window (5.2 V). Detailed experiments and theoretical calculations reveal that Li-HA-F supplies continuous dual-conductive pathways and results in stable LiF-rich interfaces, leading to its excellent performance. Moreover, the Li-HA-F nanofiber-reinforced CSE exhibits good heat/flame resistance and flexibility, with a high breaking strength (9.66 MPa). As a result, the Li/Li half cells fabricated with the Li-HA-F CSE exhibit good stability over 2000 h with a high critical current density of 1.4 mA cm-2. Furthermore, the LiFePO4/Li-HA-F CSE/Li and LiNi0.8Co0.1Mn0.1O2/Li-HA-F CSE/Li solid-state batteries deliver high reversible capacities over a wide temperature range with a good cycling performance.
RESUMO
Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to ß-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.
Assuntos
Dieta Hiperlipídica , Homeostase , Mucosa Intestinal , Obesidade , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/genética , Aumento de PesoRESUMO
Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.
Assuntos
Neoplasias , Humanos , Linfócitos T CD8-Positivos , Ciclo Celular , Membrana Celular , Neoplasias/tratamento farmacológico , Neoplasias/genética , PrognósticoRESUMO
Why lower low-density lipoprotein cholesterol (LDL-C) was associated with a decreased atherosclerotic cardiovascular disease (ASCVD) risk but an increased hemorrhagic stroke (HS) risk in hypertensive adults remains unclear. We examined whether the inverse LDL-C-HS association partly arises from its effect on ASCVD. We estimated separable effects of LDL-C on HS outside (i.e., separable direct effect) or only through its effect on ASCVD (i.e., separable indirect effect) in hypertensive adults from the Chinese Multi-provincial Cohort Study. We quantified such effects using numbers needed to treat (NNT) to prevent or cause an extra HS based on the restricted mean event-free time till a 25-year follow-up. LDL-C $<$ 70 mg/dL was not associated with an increased HS risk compared to LDL-C $\ge$ 70 mg/dL regarding total and separable direct effects. However, a small separable indirect effect (i.e., NNT to harm: 9722 participants) was noted and validated via a series of sensitivity analyses. Moreover, modified effects were observed, particularly in the 35-49-year age group, men, and those with SBP $\ge$ 140 mm Hg. These results suggest the inverse LDL-C-HS association in hypertensive adults is partly due to its effect on ASCVD. A better understanding of such associations would provide more enlightening into stroke prevention.
RESUMO
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in humans and animals. The study aimed to evaluate the efficacy of bLf as an adjuvant combined with AMP (N6) in the treatment of E. coli-induced bacterial enteritis. Sixty female ICR mice were randomly divided into six groups: CK group, NC group:(infected and untreated), N6 treatment group (20 mg/kg), bLf treatment group (100 mg/kg), bLf+ N6-A treatment group (10 mg/kg N6+100 mg/kg bLf) and bLf+N6- b group (20 mg/kg N6+100 mg/kg bLf), the clinical symptoms, intestinal morphology, inflammatory response and serum metabolites were monitored. The results showed that: compared with the NC group, the bLf-N6-A and bLf-N6-B treatment groups had significant reductions in TNF-α and IL-6, significant increases in IL-10, and significant reductions in endotoxin and DAO in plasma (p<0.05). Meanwhile, the bLf-N6-A and bLf-N6-B treatment groups significantly increased the expression of ZO-1, claudin-1 and occludin, increased the height of small intestinal mucosal villi and VH/CD after ETEC K88-induced intestinal injury (p<0.05). The supplementation of bLf and N6 relieved enteritis by balancing intestinal mucosal immunity, improving intestinal morphology and barrier function. BLf combined with N6 can be used as an effective therapeutic strategy for the treatment of bacterial enteritis.
RESUMO
BACKGROUND: To systematically analyze differences in atherosclerotic cardiovascular disease (ASCVD) burden between young and older adults. METHODS: We estimated the prevalence, mortality, and disability-adjusted life years (DALYs) of ASCVD, including ischemic heart disease (IHD), ischemic stroke (IS), and peripheral artery disease (PAD), in individuals aged 20-54 and > 55 years from 1990-2019, utilizing data from the 2019 Global Burden of Disease Study. The annual percentage changes (EAPCs) for age-specific prevalence, mortality, or DALY rates were calculated to quantify the temporal trends of ASCVD burden. We also analyzed population attribution fractions (PAF) of premature ASCVD mortality and DALYs for different risk factors and compared the burden of extremely premature, premature, and non-premature ASCVD cases based on clinical classifications. RESULTS: From 1990-2019, the global prevalence rates of IHD, IS, and PAD in the 20-54 years age group increased by 20.55% (from 694.74 to 837.49 per 100,000 population), 11.50% (from 439.48 to 490.03 per 100,000 population), and 7.38% (from 384.24 to 412.59 per 100,000 population), respectively. Conversely, the ASCVD prevalence in > 55years age group decreased. Adverse outcome burdens, including mortality and DALYs, varied among ASCVD subtypes. The decrease in the mortality/DALY burden of IHD and IS was lower in the 20-54 years group than in the > 55 years group. For PAD, DALYs among those aged 20-54 increased but decreased among those aged > 55 years. When grouped according to socio-demographic index (SDI) values, lower SDI regions exhibited a higher proportion of young ASCVD burden. The prevalence of young IHD, IS, and PAD in low SDI regions reached 20.70%, 40.05%, and 19.31% in 2019, respectively, compared with 12.14%, 16.32%, and 9.54%, respectively, in high SDI regions. Metabolic risks were the primary contributors to the ASCVD burden in both age groups. Increased susceptibility to ambient particulate matter pollution and inadequate control of high body-mass index and high fasting plasma glucose in young individuals may partially explain the differing temporal trends between young and older individuals. CONCLUSIONS: The ASCVD burden in young individuals may become a growing global health concern, especially in areas with lower socioeconomic development levels that require more effective primary prevention strategies.
Assuntos
Aterosclerose , Carga Global da Doença , Humanos , Pessoa de Meia-Idade , Adulto , Feminino , Masculino , Adulto Jovem , Prevalência , Carga Global da Doença/tendências , Aterosclerose/epidemiologia , Idoso , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Fatores Etários , Anos de Vida Ajustados por Deficiência/tendências , Doença Arterial Periférica/epidemiologiaRESUMO
Spleen tyrosine kinase (Syk) is an intracellular tyrosine kinase involved in the signal transduction in immune cells mainly. Its aberrant regulation is associated with diversified allergic disorders, autoimmune diseases and B cell malignancies. Therefore, inhibition of Syk is considered a reasonable approach to treat autoimmune/inflammatory diseases and B cell malignancies. Here we described the preclinical characterization of sovleplenib, a novel, highly potent and selective, oral Syk inhibitor, in several rodent autoimmune disease models. Sovleplenib potently inhibited Syk activity in a recombinant enzymatic assay and Syk-dependent cellular functions in various immune cell lines and human whole blood in vitro. Furthermore, sovleplenib, by oral administration, demonstrated strong in vivo efficacies in murine models of immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and chronic graft-versus-host disease (cGVHD), and a rat model of collagen induced arthritis (CIA) respectively, in a dose-dependent manner. Collectively, these results clearly supported sovleplenib as a therapeutic agent in the treatment of autoimmune diseases. Sovleplenib is being globally developed for ITP (Phase III, NCT05029635, Phase Ib/II, NCT03951623), wAIHA (Phase II/III, NCT05535933) and B-cell lymphoma (Phase I, NCT02857998, NCT03779113). SIGNIFICANCE STATEMENT: Syk is a key mediator of signaling pathways downstream of a wide array of receptors important for immune functions, including the B cell receptor, immunoglobulin receptors bearing Fc receptors. Inhibition of Syk could provide a novel therapeutic approach for autoimmune diseases and hematologic malignancies. The manuscript describes the preclinical pharmacology characterization of sovleplenib, a novel Syk inhibitor, in enzymatic and cellular assays in vitro and several murine autoimmune disease models in vivo.
Assuntos
Doenças Autoimunes , Neoplasias , Ratos , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases , Quinase Syk , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Doenças Autoimunes/tratamento farmacológico , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS: Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS: Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS: The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.