Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492234

RESUMO

MutL homolog 1 (MLH1), a member of the MutL-homolog family, is required for normal recombination in most organisms. However, its role in soybean (Glycine max) remains unclear to date. Here, we characterized the Glycine max female and male sterility 1 (Gmfms1) mutation that reduces pollen grain viability and increases embryo sac abortion in soybean. Map-based cloning revealed that the causal gene of Gmfms1 is Glycine max MutL homolog 1 (GmMLH1), and CRISPR/Cas9 knockout approach further validated that disruption of GmMLH1 confers the female-male sterility phenotype in soybean. Loss of GmMLH1 function disrupted bivalent formation, leading to univalent mis-segregation during meiosis and ultimately to female-male sterility. The Gmmlh1 mutant showed about a 78.16% decrease in meiotic crossover frequency compared to the wild type. The residual chiasmata followed a Poisson distribution, suggesting that interference-sensitive crossover formation was affected in the Gmmlh1 mutant. Furthermore, GmMLH1 could interact with GmMLH3A and GmMLH3B both in vivo and in vitro. Overall, our work demonstrates that GmMLH1 participates in interference-sensitive crossover formation in soybean, and provides additional information about the conserved functions of MLH1 across plant species.

2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338719

RESUMO

Soybean being a major cash crop provides half of the vegetable oil and a quarter of the plant proteins to the global population. Seed size traits are the most important agronomic traits determining the soybean yield. These are complex traits governed by polygenes with low heritability as well as are highly influenced by the environment as well as by genotype x environment interactions. Although, extensive efforts have been made to unravel the genetic basis and molecular mechanism of seed size in soybean. But most of these efforts were majorly limited to QTL identification, and only a few genes for seed size were isolated and their molecular mechanism was elucidated. Hence, elucidating the detailed molecular regulatory networks controlling seed size in soybeans has been an important area of research in soybeans from the past decades. This paper describes the current progress of genetic architecture, molecular mechanisms, and regulatory networks for seed sizes of soybeans. Additionally, the main problems and bottlenecks/challenges soybean researchers currently face in seed size research are also discussed. This review summarizes the comprehensive and systematic information to the soybean researchers regarding the molecular understanding of seed size in soybeans and will help future research work on seed size in soybeans.


Assuntos
Glycine max , Proteínas de Plantas , Glycine max/genética , Fenótipo , Proteínas de Plantas/genética , Óleos de Plantas , Sementes/genética
3.
J Exp Bot ; 74(14): 4014-4030, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074373

RESUMO

Yellow-green variegation leaf phenotype adds more value to ornamental plants, but it is regarded as an undesirable trait in crop plants, affecting their yields. Until recently, the underlying mechanism regulating the yellow-green variegation phenotype has remained largely unexplored in soybean. In the present study, we indentified four Glycine max leaf yellow/green variegation mutants, Gmvar1, Gmvar2, Gmvar3, and Gmvar4, from artificial mutagenesis populations. Map-based cloning, together with the allelic identification test and CRISPR-based gene knockout, proved that mutated GmCS1 controls yellow-green variegation phenotype of the Gmvar mutants. GmCS1 encodes a chorismate synthase in soybean. The content of Phe, Tyr, and Trp were dramatically decreased in Gmcs1 mutants. Exogenous supply of three aromatic amino acid mixtures, or only Phe to Gmvar mutants, leads to recovery of the mutant phenotype. The various biological processes and signalling pathways related to metabolism and biosynthesis were altered in Gmvar mutants. Collectively, our findings provide new insights about the molecular regulatory network of yellow-green variegation leaf phenotype in soybean.


Assuntos
Cloroplastos , Glycine max , Glycine max/genética , Cloroplastos/metabolismo , Mutação , Fenótipo , Folhas de Planta/metabolismo
4.
J Exp Bot ; 73(19): 6646-6662, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35946571

RESUMO

Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.


Assuntos
Arabidopsis , Fitocromo , Glycine max/genética , Glycine max/metabolismo , Fitocromo/metabolismo , Oxirredutases/metabolismo , Arabidopsis/metabolismo , Fotoperíodo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
5.
EMBO Rep ; 21(11): e50442, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32924279

RESUMO

Plant cells can sense conserved molecular patterns through pattern recognition receptors (PRRs) and initiate pattern-triggered immunity (PTI). Details of the PTI signaling network are starting to be uncovered in Arabidopsis, but are still poorly understood in other species, including soybean (Glycine max). In this study, we perform a forward genetic screen for autoimmunity-related lesion mimic mutants (lmms) in soybean and identify two allelic mutants, which carry mutations in Glyma.13G054400, encoding a malectin-like receptor kinase (RK). The mutants exhibit enhanced resistance to both bacterial and oomycete pathogens, as well as elevated ROS production upon treatment with the bacterial pattern flg22. Overexpression of GmLMM1 gene in Nicotiana benthamiana severely suppresses flg22-triggered ROS production and oomycete pattern XEG1-induced cell death. We further show that GmLMM1 interacts with the flg22 receptor FLS2 and its co-receptor BAK1 to negatively regulate flg22-induced complex formation between them. Our study identifies an important component in PTI regulation and reveals that GmLMM1 acts as a molecular switch to control an appropriate immune activation, which may also be adapted to other PRR-mediated immune signaling in soybean.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Glycine max/genética , Glycine max/metabolismo
6.
J Integr Plant Biol ; 64(5): 995-1006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312167

RESUMO

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play critical roles in regulating plant growth and development. Here, we used Short Tandem Target Mimic (STTM) technology to generate soybean (Glycine max (L.) Merr.) miRNA knockdown lines and identify miRNAs that regulate plant height, a key agronomic trait that affects yield. STTM166 successfully silenced miR166 in soybean and upregulated the expression of miR166 target genes, such as ATHB14-LIKE. The miR166 knockdown lines (GmSTTM166) displayed a reduced plant height phenotype. Moreover, GmSTTM166 plants contained lower levels of bioactive gibberellic acid (GA3) than wild-type plants, and application of exogenous GA partially rescued the dwarf phenotype of GmSTTM166. Knockdown of miR166 altered the expression of genes involved in GA biosynthesis and catabolism. Further analysis revealed that ATHB14-LIKE directly represses transcription of the GA biosynthesis genes GmGA1 and GmGA2, while activating transcription of the GA catabolic gene GIBBERLLIN 2 OXIDASE 2 (GmGA2ox2). Collectively, these results reveal a pivotal role for miR166 in the genetic control of plant height in soybean, thereby providing invaluable insights for molecular breeding to improve soybean yield.


Assuntos
Glycine max , MicroRNAs , Regulação da Expressão Gênica de Plantas/genética , Giberelinas , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
7.
Plant Biotechnol J ; 19(4): 801-813, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33131209

RESUMO

To better understand the mechanisms regulating plant carotenoid metabolism in staple crop, we report the map-based cloning and functional characterization of the Glycine max carotenoid cleavage dioxygenase 4 (GmCCD4) gene, which encodes a carotenoid cleavage dioxygenase enzyme involved in metabolizing carotenoids into volatile ß-ionone. Loss of GmCCD4 protein function in four Glycine max increased carotenoid content (gmicc) mutants resulted in yellow flowers due to excessive accumulation of carotenoids in flower petals. The carotenoid contents also increase three times in gmicc1 seeds. A genome-wide association study indicated that the GmCCD4 locus was one major locus associated with carotenoid content in natural population. Further analysis indicated that the haplotype-1 of GmCCD4 gene was positively associated with higher carotenoid levels in soybean cultivars and accumulated more ß-carotene in engineered E. coli with ectopic expression of different GmCCD4 haplotypes. These observations uncovered that GmCCD4 was a negative regulator of carotenoid content in soybean, and its various haplotypes provide useful resources for future soybean breeding practice.


Assuntos
Dioxigenases , Carotenoides , Dioxigenases/genética , Dioxigenases/metabolismo , Escherichia coli , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
8.
Plant Mol Biol ; 103(6): 609-621, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415514

RESUMO

KEY MESSAGE: Map-based cloning revealed that two novel soybean distorted trichome mutants were due to loss function of GmNAP1 gene, which affected the trichome morphology and pavement cell ploidy by regulating actin filament assembly. Trichomes increase both biotic and abiotic stress resistance in soybean. In this study, Gmdtm1-1 and Gmdtm1-2 mutants with shorter trichomes and bigger epidermal pavement cells were isolated from an ethyl methylsulfonate mutagenized population. Both of them had reduced plant height and smaller seeds. Map-based cloning and bulked segregant analysis identified that a G-A transition at the 3' boundary of the sixth intron of Glyma.20G019300 in the Gmdtm1-1 mutant and another G-A transition mutation at the 5' boundary of the fourteenth intron of Glyma.20G019300 in Gmdtm1-2; these mutations disrupted spliceosome recognition sites creating truncated proteins. Glyma.20G019300 encodes a Glycine max NCK-associated protein 1 homolog (GmNAP1) in soybean. Further analysis revealed that the GmNAP1 involved in actin filament assembling and genetic information processing pathways during trichome and pavement cell development. This study shows that GmNAP1 plays an important role in soybean growth and development and agronomic traits.


Assuntos
Glycine max/genética , Tricomas/genética , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mutação/genética , Proteínas de Plantas/genética
9.
BMC Plant Biol ; 20(1): 547, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287712

RESUMO

BACKGROUND: Organ shape and size covariation (allometry) factors are essential concepts for the study of evolution and development. Although ample research has been conducted on organ shape and size, little research has considered the correlated variation of these two traits and quantitatively measured the variation in a common framework. The genetic basis of allometry variation in a single organ or among different organs is also relatively unknown. RESULTS: A principal component analysis (PCA) of organ landmarks and outlines was conducted and used to quantitatively capture shape and size variation in leaves and petals of multiparent advanced generation intercross (MAGIC) populations of Arabidopsis thaliana. The PCA indicated that size variation was a major component of allometry variation and revealed negatively correlated changes in leaf and petal size. After quantitative trait loci (QTL) mapping, five QTLs for the fourth leaf, 11 QTLs for the seventh leaf, and 12 QTLs for petal size and shape were identified. These QTLs were not identical to those previously identified, with the exception of the ER locus. The allometry model was also used to measure the leaf and petal allometry covariation to investigate the evolution and genetic coordination between homologous organs. In total, 12 QTLs were identified in association with the fourth leaf and petal allometry covariation, and eight QTLs were identified to be associated with the seventh leaf and petal allometry covariation. In these QTL confidence regions, there were important genes associated with cell proliferation and expansion with alleles unique to the maximal effects accession. In addition, the QTLs associated with life-history traits, such as days to bolting, stem length, and rosette leaf number, which were highly coordinated with climate change and local adaption, were QTL mapped and showed an overlap with leaf and petal allometry, which explained the genetic basis for their correlation. CONCLUSIONS: This study explored the genetic basis for leaf and petal allometry and their interaction, which may provide important information for investigating the correlated variation and evolution of organ shape and size in Arabidopsis.


Assuntos
Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Alelos , Arabidopsis/anatomia & histologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Flores/anatomia & histologia , Genes de Plantas/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Análise de Componente Principal
10.
Plant Physiol ; 174(2): 1167-1176, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28336772

RESUMO

Leaf petiole angle (LPA) is an important plant architectural trait that affects canopy coverage, photosynthetic efficiency, and ultimately productivity in many legume crops. However, the genetic basis underlying this trait remains unclear. Here, we report the identification, isolation, and functional characterization of Glycine max Increased Leaf Petiole Angle1 (GmILPA1), a gene encoding an APC8-like protein, which is a subunit of the anaphase-promoting complex/cyclosome in soybean (Glycine max). A gamma ray-induced deletion of a fragment involving the fourth exon of GmILPA1 and its flanking sequences led to extension of the third exon and formation of, to our knowledge, a novel 3'UTR from intronic and intergenic sequences. Such changes are responsible for enlarged LPAs that are associated with reduced motor cell proliferation in the Gmilpa1 mutant. GmILPA1 is mainly expressed in the basal cells of leaf primordia and appears to function by promoting cell growth and division of the pulvinus that is critical for its establishment. GmILPA1 directly interacts with GmAPC13a as part of the putative anaphase-promoting complex. GmILPA1 exhibits variable expression levels among varieties with different degrees of LPAs, and expression levels are correlated with the degrees of the LPAs. Together, these observations revealed a genetic mechanism modulating the plant petiole angle that could pave the way for modifying soybean plant architecture with optimized petiole angles for enhanced yield potential.


Assuntos
Glycine max/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Loci Gênicos , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Ligação Proteica , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico , Glycine max/genética , Frações Subcelulares/metabolismo
11.
PLoS Genet ; 11(12): e1005660, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642436

RESUMO

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Plântula/genética , Transposases/biossíntese , Transposases/genética
12.
Plant Mol Biol ; 90(1-2): 33-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26482479

RESUMO

Soybean (Glycine max) is one of the most important crops in the world, and its yield is largely determined by grain weight and grain size. However, the genes that regulate soybean seed size have not been identified. CYP78A, which is highly conserved within terrestrial plants, regulates organ development. In Arabidopsis, AtCYP78A5/KLU has been shown to determine seed size. In the present study, soybean CYP78A72 (GmCYP78A72), one of the orthologs of KLU, was over-expressed in both Arabidopsis and soybean to examine its function in plant development. GmCYP78A72 heterologous expression in Arabidopsis resulted in enlarged sepals, petals, seeds and carpel. Over-expression of GmCYP78A72 in soybean resulted in increased pea size, which is an extremely desirable trait for enhancing productivity. Moreover, knock-down of GmCYP78A72 does not reduce grain size. However, silencing of GmCYP78A57, GmCYP78A70 and GmCYP78A72 genes in triplet reduces the seed size significantly indicating functional redundancy of these three GmCYP78A genes. In conclusion, we investigated the role of CYP78A in soybean seed regulation, and our strategy can be effectively used to engineer large seed traits in soybean varieties as well as other crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Expressão Gênica , Inativação Gênica , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
13.
Plant Mol Biol ; 91(4-5): 549-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27164978

RESUMO

T-DNA insertion mutants have been widely used to investigate plant gene functions. Unexpectedly, in several reported cases, the phenotype of T-DNA insertion mutations can be suppressed because of trans T-DNA interactions associated with epigenetic modification, which indicates that caution is needed when T-DNA mutants are used. In the present study, we characterized a novel process suppressing a T-DNA mutation. The spz2 (suppressor of zou 2) mutant was isolated as a suppressor of the phenotype of the zou-4 mutant caused by a T-DNA insertion in the first intron. The spz2 mutation partially recovered the native ZOU gene expression in the zou-4 background, but not in two other zou alleles, zou-2 and zou-3, with T-DNAs inserted in the exon and intron, respectively. The suppressed phenotype was inherited in a Mendelian fashion and is not associated with epigenetic modification. The recovery of the native ZOU gene expression in the spz2 zou-4 double mutant is caused by transcriptional read-through of the intronic T-DNA as a result of decreased proximal polyadenylation. SPZ2 encodes an RNA-binding protein, FPA, which is known to regulate polyadenylation site selection. This is the first example of FPA rescuing a T-DNA insertion mutation by affecting the polyadenylation site selection.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , DNA Bacteriano/genética , Genes de Plantas , Mutagênese Insercional/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Alelos , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Clonagem Molecular , Resistência Microbiana a Medicamentos/genética , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Supressores , Íntrons/genética , Mutação , Fenótipo , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
14.
Int J Mol Sci ; 18(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025485

RESUMO

Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Fatores de Transcrição/genética , Secas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
16.
New Phytol ; 196(4): 1251-1259, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025531

RESUMO

Heteroblasty refers to the changes in leaf shape and size (allometry) along stems. Although evolutionary changes involving heteroblasty might contribute to leaf diversity, little is known of the extent to which heteroblasty differs between species or how it might relate to other aspects of allometry or other developmental transitions. Here, we develop a computational model that can quantify differences in leaf allometry between Antirrhinum (snapdragon) species, including variation in heteroblasty. It allows the underlying genes to be mapped in inter-species hybrids, and their effects to be studied in similar genetic backgrounds. Heteroblasty correlates with overall variation in leaf allometry, so species with smaller, rounder leaves produce their largest leaves earlier in development. This involves genes that affect both characters together and is exaggerated by additional genes with multiplicative effects on leaf size. A further heteroblasty gene also alters leaf spacing, but none affect other developmental transitions, including flowering. We suggest that differences in heteroblasty have co-evolved with overall leaf shape and size in Antirrhinum because these characters are constrained by common underlying genes. By contrast, heteroblasty is not correlated with other developmental transitions, with the exception of internode length, suggesting independent genetic control and evolution.


Assuntos
Antirrhinum/genética , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Evolução Biológica , Quimera , Regulação da Expressão Gênica de Plantas , Variação Genética , Modelos Genéticos , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas
17.
Front Plant Sci ; 13: 892077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693168

RESUMO

The generation of oxygen and organic matter in plants mainly depends on photosynthesis, which directly affects plant growth and development. The chloroplast is the main organelle in which photosynthesis occurs. In this study, a Glycine max pale green leaf 3-1 (Gmpgl3-1) mutant was isolated from the soybean mutagenized population. The Gmpgl3-1 mutant presented with decreased chlorophyll contents, reduced chloroplast stroma thylakoids, reduced yields, and decreased numbers of pods per plant. Bulked segregant analysis (BSA) together with map-based cloning revealed a single-nucleotide non-synonymous mutation at the 341st nucleotide of the first exon of the chloroplast development-related GmTic110a gene. The phenotype of the knockout plants was the same as that of the mutant. The GmTic110a gene was highly expressed in the leaves at various developmental stages, and its protein was localized to the inner chloroplast membrane. Split luciferase complementation assays and coimmunoprecipitation (co-IP) experiments revealed that GmTic110a interacted with GmTic20, GmTic40a, and GmTic40b in tobacco leaves. These results indicated that the GmTic110a gene plays an important role in chloroplast development.

18.
Cells ; 11(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36231057

RESUMO

Seed shattering is an undesirable trait that leads to crop yield loss. Improving silique resistance to shattering is critical for grain and oil crops. In this study, we found that miR319-targeted TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCPs) inhibited the process of post-fertilized fruits (silique) elongation and dehiscence via regulation of FRUITFULL (FUL) expression in Arabidopsis thaliana and Brassica napus. AtMIR319a activation resulted in a longer silique with thickened and lignified replum, whereas overexpression of an miR319a-resistant version of AtTCP3 (mTCP3) led to a short silique with narrow and less lignified replum. Further genetic and expressional analysis suggested that FUL acted downstream of TCP3 to negatively regulate silique development. Moreover, hyper-activation of BnTCP3.A8, a B. napus homolog of AtTCP3, in rapeseed resulted in an enhanced silique resistance to shattering due to attenuated replum development. Taken together, our findings advance our knowledge of TCP-regulated silique development and provide a potential target for genetic manipulation to reduce silique shattering in Brassica crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica , MicroRNAs , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brassica/genética , Brassica napus/genética , Brassica napus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sementes/genética
19.
Front Plant Sci ; 12: 681816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149782

RESUMO

The whole-genome sequencing-based bulked segregant analysis (WGS-BSA) has facilitated the mapping candidate causal variations for cloning target plant genes. Here, we report an improved WGS-BSA method termed as M2-seq to expedite the mapping candidate mutant loci by studying just M2 generation. It is an efficient mutant gene mapping tool, rapid, and comparable to the previously reported approaches, such as Mutmap and Mutmap+ that require studying M3 or advanced selfed generations. In M2-seq, background variations among the M2 populations can be removed efficiently without knowledge of the variations of the wild-type progenitor plant. Furthermore, the use of absolute delta single-nucleotide polymorphism (SNP) index values can effectively remove the background variation caused by repulsion phase linkages of adjacent mutant alleles; and thereby facilitating the identification of the causal mutation in target genes. Here, we demonstrated the application of M2-seq in successfully mapping the genomic regions harboring causal mutations for mutant phenotypes among 10 independent M2 populations of soybean. The mapping candidate mutant genes just in M2 generation with the aid of the M2-seq method should be particularly useful in expediting gene cloning especially among the plant species with long generation time.

20.
Front Plant Sci ; 12: 690973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567023

RESUMO

Chloroplast biogenesis and development are highly complex processes requiring interactions between plastids and nuclear genomic products. Pentatricopeptide repeat (PPR) proteins play an essential role in the development of chloroplasts; however, it remains unclear how RNA editing factors influence soybean development. In this study, a Glycine max pale green leaf 2 mutant (Gmpgl2) was identified with decreased chlorophyll contents. Genetic mapping revealed that a single-nucleotide deletion at position 1949 bp in the Glyma.05g132700 gene in the Gmpgl2 mutant, resulting in a truncated GmPGL2 protein. The nuclear-encoded GmPGL2 is a PLS-type PPR protein that localizes to the chloroplasts. The C-to-U editing efficiencies of rps16, rps18, ndhB, ndhD, ndhE, and ndhF were reduced in the Gmpgl2 mutant. RNA electrophoresis mobility shift assay (REMSA) analysis further revealed that GmPGL2 binds to the immediate upstream sequences at RNA editing sites of rps16 and ndhB in vitro, respectively. In addition, GmPGL2 was found to interact with GmMORF8, GmMORF9, and GmORRM6. These results suggest that GmPGL2 participates in C-to-U RNA editing via the formation of a complex RNA editosome in soybean chloroplasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA