Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gastroenterol Hepatol ; 39(6): 1008-1015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38326979

RESUMO

BACKGROUND AND AIM: The study aims to evaluate the feasibility of body mass index (BMI)-based individualized small bowel preparation for computed tomography enterography (CTE). METHODS: In this prospective randomized controlled study, patients undergoing CTE were randomly assigned to the individualized group or standardized group. Those in individualized group were given different volumes of mannitol solution based on BMI (1000 mL for patients with BMI < 18.5 kg/m2, 1500 mL for patients with 18.5 kg/m2 ≤ BMI < 25 kg/m2 and 2000 mL for patients with BMI ≥ 25 kg/m2) while patients in the standardized group were all asked to consume 1500-mL mannitol solution. CTE images were reviewed by two experienced radiologists blindly. Each segment of the small bowel was assessed for small bowel image quality and disease detection rates. Patients were invited to record a diary regarding adverse events and acceptance. RESULTS: A total of 203 patients were enrolled and randomly divided into two groups. For patients with BMI < 18.5 kg/m2, 1000-mL mannitol solution permitted a significantly lower rate of flatulence (P = 0.045) and defecating frequency (P = 0.011) as well as higher acceptance score (P = 0.015), but did not affect bowel image quality and diseases detection compared with conventional dosage. For patients with BMI ≥ 25 kg/m2, 2000-mL mannitol solution provided better overall image quality (P = 0.033) but comparable rates of adverse events and patients' acceptance compared with conventional dosage. CONCLUSIONS: Individualized bowel preparation could achieve both satisfactory image quality and patients' acceptance thus might be an acceptable alternative in CTE.


Assuntos
Índice de Massa Corporal , Intestino Delgado , Manitol , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Manitol/administração & dosagem , Manitol/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Intestino Delgado/diagnóstico por imagem , Adulto , Idoso , Estudos de Viabilidade , Catárticos/administração & dosagem , Catárticos/efeitos adversos , Medicina de Precisão
2.
Acta Pharmacol Sin ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

3.
Nanomedicine (Lond) ; 19(1): 43-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197371

RESUMO

Aim: To fabricate and characterize metformin-loaded PLGA nanoparticles and investigate their inhibitory effect on HepG2 cells. Materials & methods: The nanoparticles were prepared using a double emulsification method, then characterized and subjected to a series of in vitro assays on HepG2 cells. Results: The nanoparticles were ~277.9 nm in size, and the entrapment efficiency and drug loading of metformin were 31.3 and 14.4%, respectively. In vitro studies suggested that the nanoparticles showed a higher inhibitory effect on HepG2 cells compared with metformin alone, mainly attributed to its blockage of autophagy, and ultimately result in cell cycle inhibition. Conclusion: The metformin-loaded PLGA nanoparticles could inhibit mTOR activity, increase p53 levels and decrease HIF1A levels, which ultimately caused HepG2 cell cycle arrest.


Metformin, a well-known drug for the treatment of diabetes, has potential anticancer effects. Our experiment is fabricating metformin into nanoformulations (tiny particles) to enhance its anticancer effect. Cancer cells respond to nutrient-deficient environments by autophagy, this involves breaking down internal structures to scavenge for nutrients, which is one of the reasons why cancer cells are so resilient. If we can interfere with this autophagy of cancer cells, we can reduce the viability of cancer cells. Speaking of autophagy, we have to mention lysosomes, which are acidic organelles within the cell that are the end point of autophagy. Lysosomes need to maintain an acidic environment to ensure the activity of various enzymes within them. These enzymes break down a variety of biological components into 'building blocks' which can be used to make other structures. Our study found that the nanoformulation disrupts the lysosomal acidic environment and thus causes autophagy blockage. As a result, cancer cells are unable to cope with nutrient deficiencies through autophagy and suffer the negative effects of autophagy blockage, such as the inability to degrade damaged organelles and proteins within the cancer cell. This causes the growth and proliferation of cancer cells to slow down and results in the death of the cancer cells.


Assuntos
Metformina , Nanopartículas , Humanos , Metformina/farmacologia , Células Hep G2 , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Autofagia , Apoptose
4.
Sci Total Environ ; : 175264, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39106904

RESUMO

Hydrothermal cracking involves the conversion of organic waste into efficient fertilizer through hydrolysis at temperatures ranging from 180 to 220 °C and pressures of 1.5 to 2.45 MPa, which offers significant advantages in shortening the production cycle, enhancing efficiency, and decomposing antibiotics. As a result, it holds immense practical value for promoting organic fertilizer manufacturing processes globally. The products derived from hydrothermal cracking can be categorized into solid and liquid components. Extensive research has focused on the composition and use of solids, while studies on liquids have mainly examined basic characteristics. The study aimed to comprehensively analyze the components in liquid products prepared through hydrothermal cracking and evaluate their suitability as liquid fertilizers. Specifically, we employed rigorous analytical techniques to accurately identify and quantify medium and trace elements, organic acids, amino acids, and plant growth regulators. Furthermore, we carried out a planting experiment to assess the yield and soil changes following the application of liquid products in maize cultivation. The experimental data revealed that the liquid product contained abundant medium and trace elements, along with 6.22 g/L free amino acids and 9.22 g/L organic acids. It is noteworthy that this liquid product contained 1.22 × 105 pg/ml ABA, 6.26 × 103 pg/ml IAA, 1.07 × 102 pg/ml IBA, and 3.60 × 10-2 pg/ml GA3. The utilization of this liquid product has the potential to enhance the disease resistance of maize crops and promote the accumulation of nitrate nitrogen in the soil. By understanding the composition of liquid products via hydrothermal cracking, valuable insights can be gained into their potential benefits for agricultural and ecological applications.

5.
Environ Sci Pollut Res Int ; 31(21): 30399-30414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607481

RESUMO

The rapid increase in soil acidity coupled with the deleterious effects of cadmium (Cd) toxicity had led to a decline in worldwide agricultural production. Rice absorbs and accumulates Cd(II) from polluted paddy soils, increasing human health risks throughout the food chain. A 35-day hydroponic experiment with four japonica and four indica (two each of them tolerant and sensitive cultivars) was conducted in this study to investigate the adsorption and absorption of Cd(II) by rice roots as related with surface chemical properties of the roots. The results showed that the three chemical forms of exchangeable, complexed, and precipitated Cd(II) increased with the increase in Cd(II) concentration for all rice cultivars. The roots of indica rice cultivars carried more negative charges and had greater functional groups and thus adsorbed more exchangeable and complexed Cd(II) than those of japonica rice cultivars. This led to more absorption of Cd(II) by the roots and greater toxicity of Cd(II) to the roots of indica rice cultivars and more inhibition of Cd(II) stress on the growth of the roots and whole plants of indica rice cultivars compared with japonica rice cultivars, which was one of the main reasons for more declines in the biomass and length of indica rice roots and shoots than japonica rice cultivars. Cd(II) stress showed more toxicity to the sensitive rice cultivars and thus greater inhibition on the growth of the cultivars due to more exchangeable and complexed Cd(II) adsorbed by their roots induced by more negative charges and functional groups on the roots compared with tolerant rice cultivar for both indica and japonica, which resulted in greater decreases in the biomass and length of roots and shoots as well as chlorophyll contents of the sensitive cultivars than the tolerant cultivars. The roots of sensitive rice cultivars also absorbed more Cd(II) than tolerant rice cultivars due to the same reasons as above. These findings will provide useful references for the safe utilization and health risk prevention of Cd-contaminated paddy fields.


Assuntos
Cádmio , Oryza , Raízes de Plantas , Poluentes do Solo , Oryza/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Adsorção , Solo/química
6.
Environ Pollut ; 351: 124061, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679131

RESUMO

Diffusive gradients in thin films technique (DGT) is recognized as a more reliable method for determining labile heavy metal (HM) concentration in soil than traditional destructive methods. However, the current DGT measurement index, CDGT, theoretically underestimates the true labile concentration (Clabile) of HMs in soil and lacks direct comparability with the conventional soil HM content indices due to unit differences. Here, we proposed CDGT-W, a new simple index which is defined as the HM accumulation in the binding layer, normalized to the weight of soil (optimized water content = 100% of the maximum water holding capacity) filled in the open cavity-type DGT device over a specified deployment time (optimized time = 24 h). The procedure for measuring CDGT-W is analogous to that of CDGT but includes precise determination of water content (water/dry soil) and the mass of soil filled in the cavity. We conducted measurements of Cu, Pb, Cr(Ⅵ) and As(V) as CDGT-W, CDGT, solution concentration (Csoln), and CaCl2 extractable concentration (CCaCl2) on three soils with a diverse range of HM concentrations. CDGT-W showed significant linear correlations with all other tested indexes. The ratios of CDGT-W to CCaCl2 varied between 0.30 and 0.98 for all HM-soil combinations with only one exception, a range much greater than CDGT/Csoln (typically <0.1) but lower than 1. This suggested that CDGT-W may more accurately reflect Clabile than CDGT (theoretically underestimates Cliable) and CCaCl2(likely overestimates Cliable). Additionally, CDGT-W measurements for these four HMs exhibited a broad measure concentration range and a low detection limit (mg/kg level). Consequently, CDGT-W may offer a more reliable alternative to CDGT for characterizing Clabile in unsaturated soils.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química , Monitoramento Ambiental/métodos , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA