Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(8): 3587-3592, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38372205

RESUMO

Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the ß-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the ß-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mercúrio , Nanoporos , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Timina , Proteínas Hemolisinas/genética , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases
2.
Langmuir ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959333

RESUMO

Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection method commonly employed in biochemical and environmental analysis. Nevertheless, the rapid movement of analytes and interfering components in flow systems can impact the real-time, online detection capability of Raman spectroscopy. To address this issue, we developed an innovative approach utilizing covalent organic framework (COF), a robust porous material with excellent water stability, to coat the surface of Ag nanowire (AgNW) for synthesizing AgNW@COF hybrid. The regular pores of the COF serve to effectively eliminate large interfering molecules while facilitating the efficient transport of specific analytes to SERS hot spots. Additionally, the fluid flow-induced scouring effect aids in excluding interfering molecules from the surface of AgNW. By incorporating AgNW@COF into a bifunctional filter membrane with simultaneous filtration and sensing capabilities, we had achieved efficient purification of organic pollutants as well as real-time identification of pollutant species and concentration.

3.
Artif Organs ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553973

RESUMO

BACKGROUND: The global incidence of liver diseases is rising, yet there remains a dearth of precise research models to mimic these diseases. The use of normothermic machine perfusion (NMP) to study diseased livers recovered from liver transplantation (LT) recipients presents a promising avenue. Accordingly, we have developed a machine perfusion system tailored specifically for the human whole diseased livers and present our experience from the NMP of diseased livers. METHODS: Six diseased livers recovered from LT recipients with different diagnoses were collected. The diseased livers were connected to the machine perfusion system that circulated tailored perfusate, providing oxygen and nutrients. The pressure and flow of the system were recorded, and blood gas analysis and laboratory tests of perfusate and bile were examined to analyze the function of the diseased livers. Liver tissues before and after NMP were collected for histological analysis. RESULTS: Experiments showed that the system maintained the diseased livers in a physiological state, ensuring stable hemodynamics and a suitable partial pressure of oxygen and carbon dioxide. The results of blood gas analysis and laboratory tests demonstrated a restoration and sustenance of metabolism with minimal damage. Notably, a majority of the diseased livers exhibited bile production continuously, signifying their vivid functional integrity. The pathological characteristics remained stable before and after NMP. CONCLUSION: We successfully established the machine perfusion system tailored specifically for diseased human whole livers. Through the application of this system, we have developed a novel in vitro model that faithfully recapitulates the main features of human liver disease. This model holds immense promise as an advanced disease modeling platform, offering profound insights into liver diseases and potential implications for research and therapeutic development.

4.
Mol Med ; 29(1): 68, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217870

RESUMO

Cardiovascular diseases have become a serious threat to human health and life worldwide and have the highest fatality rate. Therefore, the prevention and treatment of cardiovascular diseases have become a focus for public health experts. The expression of S100 proteins is cell- and tissue-specific; they are implicated in cardiovascular, neurodegenerative, and inflammatory diseases and cancer. This review article discusses the progress in the research on the role of S100 protein family members in cardiovascular diseases. Understanding the mechanisms by which these proteins exert their biological function may provide novel concepts for preventing, treating, and predicting cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Proteínas S100/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047626

RESUMO

Evodia rutaecarpa (Juss.) Benth is a traditional Chinese medicine. The active ingredient, evodiamine, is a quinolone alkaloid and is found in Evodiae fructus. We investigated the effect of evodiamine on atherosclerosis using LDLR-/- mice fed on a high-fat diet and ox-LDL-induced MOVAS cell lines to construct mouse models and cell-line models. We report a significant reduction in atherosclerotic plaque formation in mice exposed to evodiamine. Our mechanistic studies have revealled that evodiamine can regulate the proliferation, migration, and inflammatory response of and oxidative stress in vascular smooth muscle cells by inhibiting the activation of the PI3K/Akt axis, thus inhibiting the occurrence and development of atherosclerosis. In conclusion, our findings reveal a role for evodiamine in the regulation of vascular smooth muscle cells in atherosclerosis, highlighting a potential future role for the compound as an anti-atherosclerotic agent.


Assuntos
Aterosclerose , Evodia , Placa Aterosclerótica , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
6.
Korean J Physiol Pharmacol ; 27(4): 399-406, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37386837

RESUMO

Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 µM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(3): 390-395, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34402254

RESUMO

Atherosclerosis is a common pathological change in cardiovascular disease. Vascular smooth muscle cell is the main source of plaque cell and extracellular matrix, and nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the function of vascular smooth muscle cell. In the process of atherosclerosis, Nrf2 signaling pathway has the following regulatory effects on vascular smooth muscle cell: regulating the phenotype of vascular smooth muscle cell to change to the direction conducive to the alleviation of disease progression; inhibiting the proliferation and migration of vascular smooth muscle cell; mitigating the level of blood lipid; alleviating vascular smooth muscle cell calcification, aging and apoptosis process. This article reviews the specific mechanisms of Nrf2 regulating atherosclerosis, such as phenotypic transformation, proliferation and migration, lipid metabolism, calcification, aging and apoptosis in atherosclerosis, in order to provide a basis for understanding the molecular mechanism of atherosclerosis development and finding therapeutic targets.


Assuntos
Aterosclerose , Fator 2 Relacionado a NF-E2 , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais
8.
Water Sci Technol ; 2017(2): 340-350, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29851386

RESUMO

The present study explored the influence of Cl-, Br-, CO32-, HCO3-, PO43-, HPO42-, NO3-, SO32- and natural organic matter (NOM) on the reaction kinetics and the formation of undesired degradation byproducts during phenol oxidation by heat-activated persulfate (PS). CO32- and PO43- promoted the phenol degradation, because the hydrolysis of CO32- and PO43- created basic pH conditions which were conducive to enhanced PS oxidation rate. Br- promoted the reaction by reacting with sulfate radicals (SO4•-) to produce bromine radicals that can selectively react with electron-rich phenol. NOM scavenged reactive SO4•-, thus inhibiting the reaction. As a strong reducing agent, SO32- rapidly reduced PS, thus completely suppressing the reaction. HCO3-, HPO42-, Cl-, and NO3- had negligible impact on PS oxidation of phenol. Six intermediates were detected in the no anion control using gas chromatography-mass spectrometry (GC-MS). Various toxic halogenated phenols and halogenated hydroquinones were detected in the treatment containing Cl- and Br-. In contrast, in the treatment containing CO32-, HCO3-, PO43-, HPO42-, and NO3-, no new intermediates were identified except for the intermediates already detected in the control treatment. Based on intermediates identified, reaction pathways for PS oxidation of phenol without anions and in the presence of halides were proposed respectively.


Assuntos
Fenol/química , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Ânions/química , Cinética , Compostos Orgânicos/química , Oxirredução
9.
Artigo em Inglês | MEDLINE | ID: mdl-38451405

RESUMO

The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.

10.
J Mater Chem B ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963283

RESUMO

A hydrogel is an ideal matrix material for flexible electronic devices, electronic skin and health detection devices due to its outstanding flexibility and stretchability. However, hydrogel-based flexible electronic devices swell once they are placed in a high humidity or underwater environment. The swelling behavior could damage the internal structure of hydrogels, ultimately leading to the reduction or complete loss of mechanical properties, electrical conductivity and sensing function. In order to resolve the above problems, a double network ionogel with remarkable anti-swelling behavior, stretchability and conductive properties was prepared. The ionogel consisted of gelatin (G) and copolymerization of acrylic acid (AA), 2-hydroxyethyl methacrylate (HEMA), butyl acrylate (BA), dimethylaminoethyl methacrylate maleate (D) and N,N'-methylene-bis-acrylamide (MBAA). Due to the dense crosslinking network and hydrophobic interaction, the ionogel exhibited remarkable anti-swelling properties (7.64% of the 30-day equilibrium swelling ratio in deionized water). D and MBAA were simultaneously introduced into the ionogel system as cross-linking agents to provide a large number of cross-linking points, improving the cross-linking density of the ionogel. Importantly, the introduction of D avoided ionic leakage by free radical copolymerization. Furthermore, the ionogel maintained stable mechanical properties and conductivity after being submerged in deionized water owing to remarkable anti-swelling performance. The mechanical properties of the ionogel retained 89.75% of the initial mechanical properties after a 5-day immersion in deionized water. Therefore, this ionogel could be employed as an underwater flexible wearable sensor for high humidity or underwater motion monitoring.

11.
Org Lett ; 26(15): 3279-3283, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38578864

RESUMO

Chiral spiro-polycyclic oxindoles are valuable heterocyclic ring systems that are widely distributed in natural alkaloids and biologically active compounds. Herein, we reported an asymmetric tandem Michael addition/interrupted Nef reaction of nitromethane with oxindole-derived alkenes catalyzed by a chiral 2-aminobenzimidazole bifunctional organocatalyst. A series of novel enantiomerically enriched spiro-polycyclic oxindole derivatives bearing an oxime group were synthesized in moderate to excellent isolated yields (up to 99%) with an excellent level of enantioselectivities (up to 99% ee). Furthermore, the antiproliferation activity of the resulting oxindoles derivatives were evaluated, and compound 2d demonstrated promising anticancer properties against HCT116 (IC50 = 14.08 µM) and HT29 (IC50 = 15.46 µM) cell lines.

12.
Talanta ; 271: 125731, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309116

RESUMO

Field-effect transistors (FETs) have been developed as pH sensors by using various device structures, fabrication technologies, and sensing film materials. Different transistor structures, like extended-gate (EG) FETs, floating-gate FET sensors, and dual-gate (DG) FETs, can enhance the sensor performance. In this article, we report the effects of using solution-gate and bottom-gate FET configurations on pH sensing and investigate the influence of different ionic concentrations of buffers in the measured signals. The surface charge of hafnium dioxide (HfO2) affected by the buffer pH, with/without the modification of polyethylene glycol (PEG) terminated with hydroxyl groups, and the location of applied gate voltage are vital factors to the sensor performance in pH sensing. Based on the results, the solution-gate FET exhibits good pH sensitivity even in the high ionic strength solutions of bis-tris propane (BTP), and these values of pH sensitivity are close to the Nernst limit (59.2 mV/pH). In general, silane-PEG-OH modification can reduce the deviations of measured signals in pH sensing. The performance of bottom-gate FET is inferior in the BTP buffers with high ionic solutions but suitable to be operated in low ionic concentrations, such as 0.1, 1, and 10 mM BTP buffers. The size of the ions was also studied and discussed. The solution-gate FET demonstrates excellent performance under high ionic strengths, meaning a more significant potential for detecting biological molecules under physiological conditions.

13.
J Mech Behav Biomed Mater ; 150: 106306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091923

RESUMO

At present, simple anti-tumor drugs are ineffective at targeting bone tissue and are not purposed to treat patients with bone metastasis. In this study, zoledronic acid (ZOL) demonstrated excellent bone-targeting properties as a bone-targeting ligand. The metal-organic framework (MOF) known as ZIF-90 was modified with ZOL to construct a bone-targeting-based drug delivery system. Chlorin e6 (Ce6) was loaded in the bone-targeted drug delivery system and combined with 2-deoxy-D-glucose (2-DG), which successfully treated bone tumors when enhanced photodynamic therapy was applied. The Ce6@ZIF-PEG-ZOL (Ce6@ZPZ) nanoparticles were observed to have uniform morphology, a particle size of approximately 210 nm, and a potential of approximately -30.4 mV. The results of the bone-targeting experiments showed that Ce6@ZPZ exhibited a superior bone-targeted effect when compared to Ce6@ZIF-90-PEG. The Ce6@ZPZ solution was subjected to 660 nm irradiation and the resulting production of reactive oxygen species increased over time, which could be further increased when Ce6@ZPZ was used in combination with 2-DG. Their combination had a stronger inhibitory capacity against tumor cells than either 2-DG or Ce6@ZPZ alone, increasing the rate of tumor cell apoptosis. The apoptosis rate caused by HGC-27 was 61.56% when 2-DG was combined with Ce6@ZPZ. In vivo results also showed that Ce6@ZPZ combined with 2-DG maximally inhibited tumor growth and prolonged mice survival compared to the other experimental groups. Therefore, the combination of PDT and glycolytic inhibitors serves as a potential option for the treatment of cancer.


Assuntos
Neoplasias Ósseas , Nanopartículas , Fotoquimioterapia , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Glucose , Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos , Desoxiglucose/farmacologia
14.
Eur J Phys Rehabil Med ; 60(2): 361-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345568

RESUMO

INTRODUCTION: Exercise-based cardiac rehabilitation (CR) plays a critical role in coronary heart disease (CHD) management. There is a heritage in the effect of exercise-based CR with different exercise programs or intervention settings. This study developed an evidence matrix that systematically assesses, organizes, and presents the available evidence regarding exercise-based CR in CHD management. EVIDENCE ACQUISITION: A comprehensive literature search was conducted across six databases. Two reviewers screened the identified literature, extracted relevant data, and assessed the quality of the studies. An evidence-mapping framework was established to present the findings in a structured manner. Bubble charts were used to represent the included systematic reviews (SRs). The charts incorporated information, exercise prescriptions, outcome indicators, associated P values, research quality, and the number of original studies. A descriptive analysis summarized the types of CR, intervention settings, influential factors, and adverse events. EVIDENCE SYNTHESIS: Sixty-two SRs were included in this analysis, focusing on six exercise types in addition to assessing major adverse cardiovascular events (MACE), cost and rehabilitation outcomes. The most commonly studied exercise types were unspecified (28 studies, 45.2%) and aerobic (11 studies, 17.7%) exercises. All-cause mortality was the most frequently reported MACE outcome (22 studies). Rehabilitation outcomes primarily centered around changes in cardiac function (135 outcomes from 39 SRs). Only 8 (12.9%) studies were rated as "high quality." No significant adverse events were observed in the intervention group. Despite some variations among the included studies, most SRs demonstrated the benefits of exercise in improving one or more MACE or rehabilitation outcomes among CHD patients. CONCLUSIONS: The proportion of high-quality evidence remains relatively low. Limited evidence is available regarding the effectiveness of specific exercise types and specific populations, necessitating further evaluation.


Assuntos
Reabilitação Cardíaca , Doença das Coronárias , Infarto do Miocárdio , Humanos , Qualidade de Vida , Doença das Coronárias/etiologia , Doença das Coronárias/reabilitação , Terapia por Exercício
15.
ACS Appl Mater Interfaces ; 15(39): 46417-46427, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733927

RESUMO

Recent years have witnessed the development of flexible electronic materials. Flexible electronic devices based on hydrogels are promising but face the limitations of having no resistance to swelling and a lack of functional integration. Herein, we fabricated a hydrogel using a solvent replacement strategy and explored it as a flexible electronic material. This hydrogel was obtained by polymerizing 2-hydroxyethyl methacrylate (HEMA) in ethylene glycol and then immersing it in water. The synergistic effect of hydrogen bonding and hydrophobic interactions endows this hydrogel with anti-swelling properties in water, and it also exhibits enhanced mechanical properties and outstanding self-bonding properties. Moreover, the modulus of the hydrogel is tissue-adaptable. These properties allowed the hydrogel to be simply assembled with a liquid metal (LM) to create a series of structurally complex and functionally integrated flexible sensors. The hydrogel was used to assemble resistive and capacitive sensors to sense one-, two-, and three-dimensional strains and finger touches by employing specific structural designs. In addition, a multifunctional flexible sensor integrating strain sensing, temperature sensing, and conductance sensing was assembled via simple multilayer stacking to enable the simultaneous monitoring of underwater motion, water temperature, and water quality. This work demonstrates a simple strategy for assembling functionally integrated flexible electronics, which should open opportunities in next-generation electronic skins and hydrogel machines for various applications, especially underwater applications.

16.
Polymers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242916

RESUMO

Polyimide (PI) with ultra-high thermal resistance and stability is essential for application as a flexible substrate in electronic devices. Here, the Upilex-type polyimides, which contained flexibly "twisted" 4,4'-oxydianiline (ODA), have achieved various performance improvements via copolymerization with a diamine containing benzimidazole structure. With the rigid benzimidazole-based diamine bearing conjugated heterocyclic moieties and hydrogen bond donors fused into the PI backbone, the benzimidazole-containing PI showed outstanding thermal, mechanical, and dielectric performance. Specifically, the PI containing 50% bis-benzimidazole diamine achieved a 5% decomposition temperature at 554 °C, an excellent high glass transition temperature of 448 °C, and a coefficient of thermal expansion lowered to 16.1 ppm/K. Meanwhile, the tensile strength and modulus of the PI films containing 50% mono-benzimidazole diamine increased to 148.6 MPa and 4.1 GPa, respectively. Due to the synergistic effect of rigid benzimidazole and hinged, flexible ODA, all PI films exhibited an elongation at break above 4.3%. The electrical insulation of the PI films was also improved with a dielectric constant lowered to 1.29. In summary, with appropriate mixing of rigid and flexible moieties in the PI backbone, all the PI films showed superior thermal stability, excellent flexibility, and acceptable electrical insulation.

17.
Campbell Syst Rev ; 19(4): e1372, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38084100

RESUMO

This is the protocol for a Campbell systematic review. The objectives are as follows. We will solve the following questions: (1) What are the characteristics of skills training services for individuals experiencing or at risk of homelessness? (2) How effectively do the different skills training programs improve employment status, work and life skills, or housing stability? (3) What factors are associated with the variation in the effectiveness of skills training services?

18.
RSC Adv ; 13(3): 1530-1538, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688066

RESUMO

Based on the precise phase control V species adjustment of vanadium phosphorus oxides (VPOs), a series of metal oxides (Nb2O5, MoO3, WO3, and Bi2O3) were selected as modification agents to further enhance the catalytic activity and retain the excellent durability of VPO-TiO2-based catalysts for the new procedure of producing acrylic acid via acetic acid-formaldehyde condensation. At an elevated liquid hourly space velocity (LHSV), the (AA + MA) selectivity reached 92.3% with a (MA + AA) formation rate of 63.8 µmol-1 gcat -1 min-1 over the Nb-decorated catalyst (catalyst VTi-Nb), and it maintained good durability for up to 100 h. The detailed characterization results of XRD, Raman, XPS, NH3-TPD, CO2-TPD, and H2-TPR, demonstrated that the addition of Nb2O5 could observably enhance the catalytic efficiency of the VPO-TiO2 catalyst. It not only improved the catalyst durability by enhancing prereduction of the V5+ species, but also enhanced the active site density to improve the catalytic activity.

19.
Adv Mater ; 35(49): e2309370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747308

RESUMO

The increased incidence of inflammatory bowel disease (IBD) has seriously affected the life quality of patients. IBD develops due to excessive intestinal epithelial cell (IEC) apoptosis, disrupting the gut barrier, colonizing harmful bacteria, and initiating persistent inflammation. The current therapeutic approaches that reduce inflammation are limited. Although IBD can be treated significantly by directly preventing IEC apoptosis, achieving this therapeutic approach remains challenging. Accordingly, the authors are the first to develop an oral pifithrin-α (PFTα, a highly specific p53 inhibitor) embedded nanomedicine (OPEN) to effectively treat IBD by inhibiting excessive IEC apoptosis. As a major hub for various stressors, p53 is a central determinant of cell fate, and its inhibition can effectively reduce excessive IEC apoptosis. The tailored OPEN can precisely inhibit the off-target and inactivation resulting from PFTα entry into the bloodstream. Subsequently, it persistently targets IBD lesions with high specificity to inhibit the pathological events caused by excessive IEC apoptosis. Eventually, OPEN exerts a significant curative effect compared with the clinical first-line drugs 5-aminosalicylic acid (5-ASA) and dexamethasone (DEX). Consequently, the OPEN therapeutic strategy provides new insights into comprehensive IBD therapy.


Assuntos
Doenças Inflamatórias Intestinais , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/farmacologia , Nanomedicina , Mucosa Intestinal , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Apoptose , Inflamação/patologia , Células Epiteliais
20.
Adv Sci (Weinh) ; 10(24): e2302208, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340606

RESUMO

The fast conversion of hydrogen peroxide (H2 O2 ) into reactive oxygen species (ROS) at tumor sites is a promising anticancer strategy by manipulating nanomedicines with near-infrared light in the second region (NIR-II). However, this strategy is greatly compromised by the powerful antioxidant capacity of tumors and the limited ROS generation rate of nanomedicines. This dilemma mainly stems from the lack of an effective synthesis method to support high-density copper-based nanocatalysts on the surface of photothermal nanomaterials. Herein, a multifunctional nanoplatform (MCPQZ) with high-density cuprous (Cu2 O) supported molybdenum disulfide (MoS2 ) nanoflowers (MC NFs) is developed for the efficient killing of tumors via a potent ROS storm by an innovative method. Under NIR-II light irradiation, the ROS intensity and maximum reaction velocity (Vmax ) produced by MC NFs are 21.6 and 33.8 times that of the non-irradiation group in vitro, which is much higher than most current nanomedicines. Moreover, the strong ROS storm in cancer cells is efficiently formed by MCPQZ (increased by 27.8 times compared to the control), thanks to the fact that MCPQZ effectively pre-weakens the multiple antioxidant systems of cancer cells. This work provides a novel insight to solve the bottleneck of ROS-based cancer therapy.


Assuntos
Cobre , Molibdênio , Espécies Reativas de Oxigênio , Fototerapia/métodos , Antioxidantes , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA