RESUMO
Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.
RESUMO
Per- and polyfluoroalkyl substances (PFAS) accumulate in water resources and pose serious environmental and health threats due to their nonbiodegradable nature and long environmental persistence times. Strategies for the efficient removal of PFAS from contaminated water are needed to address this concern. Here, we report a fluorinated nonporous adaptive crystalline cage (F-Cage 2) that exploits electrostatic interaction, hydrogen bonding, and F-F interactions to achieve the efficient removal of perfluorooctanoic acid (PFOA) from aqueous source phases. F-Cage 2 exhibits a high second-order kobs value of approximately 441,000 g mg-1 h-1 for PFOA and a maximum PFOA adsorption capacity of 45 mg g-1. F-Cage 2 can decrease PFOA concentrations from 1500 to 6 ng L-1 through three rounds of flow-through purification, conducted at a flow rate of 40 mL h-1. Elimination of PFOA from PFOA-loaded F-Cage 2 is readily achieved by rinsing with a mixture of MeOH and saturated NaCl. Heating at 80 °C under vacuum then makes F-Cage 2 ready for reuse, as demonstrated across five successive uptake and release cycles. This work thus highlights the potential utility of suitably designed nonporous adaptive crystals as platforms for PFAS remediation.
RESUMO
The inherent benefits of C-H activation have given rise to innovative approaches in designing organic optoelectronic molecules that depart from conventional methods. While theoretical calculations have suggested the suitability of the 2,6-naphthyridine scaffold for electron transport materials (ETMs) in organic light-emitting diodes (OLEDs), the existing synthetic methodologies have proven to be insufficient for the construction of multiple arylated and fully aryl-substituted molecules. Herein, we present a solution for the synthesis of 2,6-naphthyridine derivatives, with the rhodium-catalyzed consecutive C-H activation-annulation process of fumaric acid with alkynes standing as the pivotal step within this strategy. The ETMs, purposefully designed and synthesized based on the 2,6-naphthyridine framework, exhibit an impressively high glass-transition temperature (Tg) of 282 °C and high electron mobility (µe), setting a new benchmark for ETMs in OLEDs with a µe exceeding 10-2 cm2 V-1 s-1. These materials prove to be versatile ETM candidates suitable for red, green, and blue phosphorescent OLED devices.
RESUMO
We report here an expanded porphyrinoid, cyclo[2]pyridine[8]pyrrole, 1, that can exist at three closed-shell oxidation levels. Macrocycle 1 was synthesized via the oxidative coupling of two open chain precursors and fully characterized by means of NMR and UV-vis spectroscopies, MS, and X-ray crystallography. Reduction of the fully oxidized form (1, blue) with NaBH4 produced either the half-oxidized (2, teal) or fully reduced forms (3, pale yellow), depending on the amount of reducing agent used and the presence or absence of air. Reduced products 2 or 3 can be oxidized to 1 by various oxidants (quinones, FeCl3, and AgPF6). Macrocycle 1 also undergoes proton-coupled reductions with I-, Br-, Cl-, SO32-, or S2O32- in the presence of an acid. Certain thiol-containing compounds likewise reduce 1 to 2 or 3. This conversion is accompanied by a readily discernible color change, making cyclo[2]pyridine[8]pyrrole 1 able to differentiate biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH).
RESUMO
We herein disclose a highly efficient one-pot synthetic strategy for dihydrobenzo[a]fluorenes via cascade rhodium(III)-catalyzed ortho-C-H activation/annulation of thiobenzamides with aryl ethynyl ketones and subsequently copper(II)-promoted intramolecular C-H/C-H cross-coupling reactions. Mechanistic investigations suggest that Cu(II) plays two crucial roles by serving as a sulfide scavenger to regenerate the Rh(III) catalyst and promoting the intramolecular C-H/C-H cross-coupling reaction. This protocol greatly streamlines accesses to a variety of appealing tetracyclic benzo[a]fluorene skeletons, which may have potential biological activity and medicinal properties.
RESUMO
Methods for regioselective N-trideuteromethylation of tautomeric polyaza heterocycles are highly sought-after. Disclosed herein is an N-trideuterated methylation reaction of imidazoles and pyrazoles with high regioselectivity and deuterium purity using easily available CF3SO3CD3 as the -CD3 source. This method enables the easy synthesis of important deuterium-labeled azoles, including dimetridazole-d3, ipronidazole-d3, hydroxy dimetridazole-d3, and ronidazole-d3.
RESUMO
Adenine base editors (ABEs) catalyze A-to-G conversions, offering therapeutic options to treat the major class of human pathogenic single nucleotide polymorphisms (SNPs). However, robust and precise editing at diverse genome loci remains challenging. Here, using high-throughput chemical screening, we identified and validated SB505124, a selective ALK5 inhibitor, as an ABE activator. Treating cells with SB505124 enhanced on-target editing at multiple genome loci, including epigenetically refractory regions, and showed little effect on off-target conversion on the genome. Furthermore, SB505124 facilitated the editing of disease-associated genes in vitro and in vivo. Intriguingly, SB505124 served as a specific activator by selectively promoting ABE activity. Mechanistically, SB505124 promotes ABE editing, at least in part, by enhancing ABE expression and modulating DNA repair-associated genes. Our findings reveal the role of the canonical transforming growth factor-ß pathway in gene editing and equip ABEs with precise chemical control.
Assuntos
Adenina , Fator de Crescimento Transformador beta , Adenina/química , Sistemas CRISPR-Cas , Edição de Genes , Genoma , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismoRESUMO
We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6- salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+â¢2) or 4,4'-stilbenedicarboxylic acid (2H+â¢3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.
RESUMO
Benzophenone skeletons containing a carbonyl unit (O=C) have been widely used as electron acceptors in the thermally activated delayed fluorescence (TADF) materials. Herein, we present a novel molecular design concept for TADF materials by transitioning from a carbonyl to an amide (O=C-N) skeleton as the acceptor. The amide unit, compared to its carbonyl counterpart, offers a more stable electronic configuration. Leveraging this insight, we have developed a series of high-performance TADF molecules based on benzoyl carbazole and carbazoline acceptors. These molecules exhibit exceptionally small singlet-triplet energy gaps and pronounced aggregation-enhanced emission properties, achieving photoluminescence quantum yields in neat films as high as 99 %. Consequently, these materials serve as efficient emitters in non-doped organic light-eimtting diodes (OLEDs), reaching a maximum quantum efficiency (EQEmax) of up to 26.0 %, significantly higher than the 17.0 % obtained with benzophenone acceptor-based TADF molecules. Additionally, they have been used as TADF hosts in narrowband red fluorescent OLEDs, setting a record-high EQEmax of 22.4 %.
RESUMO
This study addresses a challenge in organic synthetic chemistry: the direct cleavage of amide bonds, which is typically hampered by the thermodynamic stability of the C(Ar)-C(acyl) bond. Previous methods often rely on "CO" extrusion-jointing transition metal-catalyzed process and require activated tertiary amides, limiting their applicability due to incompatibility with reactive functional groups such as halogens. Herein, we report a transition metal-free approach for the deamidative cyclization of biaryl diamides via a radical process, yielding dibenzolactam derivatives. Along this line, we have developed the desulfonamidative cyclization of biaryl disulfonamides to produce dibenzosultams through direct nucleophilic aromatic substitution, demonstrating high selectivity for unsymmetrical structures. Additionally, unsymmetrical sulfamoyl biaryl amides, containing both amide and sulfonamide functionalities, can selectively undergo desulfonamidative coupling with the amide to form dibenzolactams, which offers a complementary synthetic pathway to unsymmetric dibenzolactams. These protocols exhibit excellent compatibility with reactive functional groups, including halogens, providing an innovative synthetic toolbox for the development of thermally activated delayed fluorescence (TADF) materials used in organic light emitting diodes (OLEDs). DMAC-PDO, incorporating a dibenzolactam as the acceptor unit, serves as an efficient blue TADF emitter with a maximum external quantum efficiency (EQEmax) of 23.4%.
RESUMO
Controllable solid-state transformations can provide a basis for novel functional materials. Herein, we report a series of solid-state systems that can be readily transformed between amorphous, co-crystalline, and mixed crystalline states via grinding or exposure to solvent vapors. The present solid materials were constructed using an all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (D4d-CDMB-8) (host), and neutral aggregation-caused quenching dyes (guests), including 9,10-dibromoanthracene (1), 1,8-naphtholactam (2), diisobutyl perylene-3,9-dicarboxylate (3), 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (5), and 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (6). Seven co-crystals and six amorphous materials were obtained via host-guest complexation. Most of these materials displayed turn-on fluorescence emission (up to 20-fold enhancement relative to the corresponding solid-state guests). The interconversion between amorphous, co-crystalline states, and crystalline mixtures could be induced by exposure to solvent vapors or by subjecting to grinding. The transformations could be monitored readily by means of single-crystal and powder X-ray diffraction analyses, as well as solid-state fluorescent emission spectroscopy. The externally induced structural interconversions resulted in time-dependent fluorescence changes. This allowed sets of privileged number array codes to be generated.
RESUMO
The availability of electromagnetic pulses with controllable field waveform and extremely short duration, even below a single optical cycle, is imperative to fully harness strong-field processes and to gain insight into ultrafast light-driven mechanisms occurring in the attosecond time-domain. The recently demonstrated parametric waveform synthesis (PWS) introduces an energy-, power- and spectrum-scalable method to generate non-sinusoidal sub-cycle optical waveforms by coherently combining different phase-stable pulses attained via optical parametric amplifiers. Significant technological developments have been made to overcome the stability issues related to PWS and to obtain an effective and reliable waveform control system. Here we present the main ingredients enabling PWS technology. The design choices concerning the optical, mechanical and electronic setups are justified by analytical/numerical modeling and benchmarked by experimental observations. In its present incarnation, PWS technology enables the generation of field-controllable mJ-level few-femtosecond pulses spanning the visible to infrared range.
RESUMO
The catalytic oxidation effect of MnSO4 on As(III) by air in an alkaline solution was investigated. According to the X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis results of the product, it was shown that the introduction of MnSO4 in the form of solution would generate Na0.55Mn2O4·1.5H2O with strong catalytic oxidation ability in the aerobic alkaline solution, whereas the catalytic effect of the other product MnOOH is not satisfactory. Under the optimal reaction conditions of temperature 90°C, As/Mn molar ratio 12.74:1, air flow rate 1.0 L/min, and stirring speed 300 r/min, As(III) can be completely oxidized after 2 hr reaction. The excellent catalytic oxidation ability of MnSO4 on As(III) was mainly attributed to the indirect oxidation of As(III) by the product Na0.55Mn2O4·1.5H2O. This study shows a convenient and efficient process for the oxidation of As(III) in alkali solutions, which has potential application value for the pre-oxidation of arsenic-containing solution or the detoxification of As(III).
Assuntos
Álcalis , Arsênio , Catálise , Oxirredução , Espectroscopia FotoeletrônicaRESUMO
The captan residues in apple juice were detected by fluorescence spectrometry, and the content level of captan was predicted based on a genetic algorithm and support vector machines (GA-SVMs). According to the captan concentration in apple juice, the experimental samples were divided into four levels, including no excess, slight excess, moderate excess, and severe excess. A GA was used to select the characteristic wavelength and optimize SVM parameters, and SVM was applied to train the classification model. 50 characteristic wavelength points were selected from the original fluorescence spectra, which contained 401 wavelength points, and the classification accuracy of the training set and test set is 99.02% and 100%, respectively, which is higher than the traditional PLS method. The results show that a GA can effectively select the feature wavelengths, and an SVM model can accurately predict the content level of captan residues. A fast and non-destructive analysis method, combined with a GA and SVM based on fluorescence spectroscopy, was realized.
Assuntos
Malus , Máquina de Vetores de Suporte , Algoritmos , Captana , Malus/química , Espectrometria de FluorescênciaRESUMO
CRISPR-Cas systems empower prokaryotes with adaptive immunity against invasive mobile genetic elements. At the first step of CRISPR immunity adaptation, short DNA fragments from the invaders are integrated into CRISPR arrays at the leader-proximal end. To date, the mechanism of recognition of the leader-proximal end remains largely unknown. Here, in the Sulfolobus islandicus subtype I-A system, we show that mutations destroying the proximal region reduce CRISPR adaptation in vivo. We identify that a stem-loop structure is present on the leader-proximal end, and we demonstrate that Cas1 preferentially binds the stem-loop structure in vitro. Moreover, we demonstrate that the integrase activity of Cas1 is modulated by interacting with a CRISPR-associated factor Csa3a. When translocated to the CRISPR array, the Csa3a-Cas1 complex is separated by Csa3a binding to the leader-distal motif and Cas1 binding to the leader-proximal end. Mutation at the leader-distal motif reduces CRISPR adaptation efficiency, further confirming the in vivo function of leader-distal motif. Together, our results suggest a general model for binding of Cas1 protein to a leader motif and modulation of integrase activity by an accessory factor.
Assuntos
Proteínas Associadas a CRISPR , Sulfolobus , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Integrases/metabolismo , Motivos de Nucleotídeos , Sulfolobus/genética , Sulfolobus/metabolismoRESUMO
The oxidization of As(III) to As(V) is necessary for both the detoxification of arsenic and the removal of arsenic by solidification. In order to achieve high efficiency and low cost As(III) oxidation, a novel process of catalytic aerial oxidation of As(III) is proposed, using air as oxidant and Mn-loaded diatomite as a catalyst. Through systematic characterization of the reaction products, the catalytic oxidation reaction law of Mn-loaded diatomite for As(III) was found out, and its reaction mechanism was revealed. Results show that Mn-loaded diatomite achieved a good catalytic effect for aerial oxidation of As(III) and maintained high performance over multiple cycles of reuse, which was directly related to the structure of diatomite and the behavior of manganese. Under the conditions of a catalyst concentration of 20 g/L, an air flow rate of 0.3 m3/h, a reaction temperature of 50 °C and an initial pH of 12.6, 96.04% As(III) oxidation was achieved after 3 h. Furthermore, the efficiency of As(III) oxidation did not change significantly after ten cycles of reuse. XPS analysis of the reaction products confirmed that the surface of the catalyst was rich in Mn(III), Mn(IV) and adsorbed oxygen(O-H), which was the fundamental reason for the excellent performance of Mn-loaded diatomite in the catalytic oxidation of As(III).
Assuntos
Arsênio , Compostos de Manganês , Arsênio/química , Terra de Diatomáceas/química , Compostos de Manganês/química , Oxirredução , Óxidos/químicaRESUMO
An approach allowing remote editing of stacked aromatic assemblies for heteroannular C-H functionalization would represent a transformative chemical toolbox that may make the diversification of complex molecules in a straightforward manner. However, such a C-H activation is usually less kinetically and thermodynamically favorable than homoannular ortho C-H activation and remains a fundamental challenge. Herein we disclose an engineer's approach, using a transient ligand as an interim bridge between two aryl rings (analogues to mountaintops) to anchor the metal center on the remote heteroannular C-H bond. As a proof-of-concept, we present the palladium-catalyzed heteroannular C-H olefination of stacked aromatic assemblies with olefins and allylation with vinyl acetates using L-tert-leucine acid as a transient ligand. Mechanistic investigations suggest an unusual olefin coordination-promoted interannular palladium migration process determinative for reversal of the site-selectivity.
RESUMO
Described here is a three-component self-assembly system that displays emergent behavior that differs from that of its constituents. The system comprises an all-hydrocarbon octaaryl macrocycle cyclo[8](1,3-(4,6-dimethyl)benzene (D4d-CDMB-8), corannulene (Cora), and I2. No appreciable interaction is seen between any pair of these three-components, either in cyclohexane or under various crystallization conditions. On the other hand, when all three-components are mixed in cyclohexane and allowed to undergo crystallization, a supramolecular iodine-containing capsule, ((D4d-CDMB-8)3â(Cora)2)âI2, is obtained. This all-hydrocarbon capsule consists of three D4d-CDMB-8 and two Cora subunits and contains a centrally bound I2 molecule as inferred from single-crystal and powder X-ray diffraction studies as well as solid-state 13C NMR and Raman spectroscopy. These analyses were complemented by solution-phase 1H NMR and UV-vis spectroscopic studies. No evidence of I2 escape from the capsule is seen, even at high temperatures (e.g., up to 418 K). The bound I2 is likewise protected from reaction with alkali or standard reductants in aqueous solution (e.g., saturated NaOH(aq) or aqueous Na2S2O3). It was also found that a mixed powder containing D4d-CDMB-8 and Cora in a 3:2 molar ratio could capture saturated I2 vapor or iodine from aqueous sources (e.g., 1.0 mM I2 in NaCl (35 wt %) or I2 + NaI(aq) (1.0 mM each)). The present system displays structural and functional features that go beyond what would be expected on the basis of a simple sum-of-the-components analysis. As such, it illustrates a new approach to creating self-assembled ensembles with emergent features.
RESUMO
The installation of (benzo)thiophene-containing biaryls via coupling reactions has become a staple in designing photoelectric materials. Undeniably, C-H/C-H cross-coupling reactions between two (hetero)aromatics would be a shortcut toward these structural fragments. While more reliable cross-coupling technologies are well-established to provide C2-arylated (benzo)thiophenes, efficient methods that arylate the C3-position remain underdeveloped. Herein we provide insight into the factors that determine regioselectivity switching for these cross-coupling reactions. X-ray crystallographic analysis gives solid evidence for the key roles of triflate in regioselective dearomatization and acetate in base-assisted anti-ß-deprotonated rearomatization. The first isolation and X-ray characterization of a medium-sized dearomatized cyclometalated adduct involving both substrates provide extra insight into aerobic oxidative Ar-H/Ar-H cross-coupling reactions. The mechanistic breakthrough incubates the first example, enabling C-H/C-H-type C3-arylation of benzothiophenes. Finally, this chemistry is used to design blue-emitting thermally activated delayed fluorescence (TADF) materials with a helicene conformation that exhibit a high maximum external quantum efficiency of 25.4% in OLED.
RESUMO
The pursuit of efficient synthetic route to thienoacenes represents an appealing yet challenging task in the fields of both organic synthetic chemistry and organic functional materials. In this work, we disclose a rhodium-catalyzed cascade C-H annulation of phenacyl phosphoniums with (benzo)thiophenes via a Heck-type pathway to provide a new class of planar thienoacenes, which involves the formation of three Caryl -Caryl bonds and one Caryl -O bond in a single operation. The neutral S,O-heteroacenes exhibit superior stability and adopt a herringbone-like packing mode with efficient π-π stacking in the crystals, suggesting their potential in organic semiconducting materials. This work first exemplifies the superiority of cascade oxidative C-H annulation involving a Heck-type pathway in the development of concise access to heteroacenes.