Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4416, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479718

RESUMO

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Animais , Ratos , Artéria Pulmonar , Fenômenos Biomecânicos , Elastina
2.
J Vis Exp ; (181)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311828

RESUMO

Pulmonary hypertension due to left heart disease (PH-LHD) is the most common form of PH, yet its pathophysiology is poorly characterized than pulmonary arterial hypertension (PAH). As a result, approved therapeutic interventions for the treatment or prevention of PH-LHD are missing. Medications used to treat PH in PAH patients are not recommended for treatment of PH-LHD, as reduced pulmonary vascular resistance (PVR) and increased pulmonary blood flow in the presence of increased left-sided filling pressures may cause left heart decompensation and pulmonary edema. New strategies need to be developed to reverse PH in LHD patients. In contrast to PAH, PH-LHD develops due to increased mechanical load caused by congestion of blood into the lung circulation during left heart failure. Clinically, mechanical unloading of the left ventricle (LV) by aortic valve replacement in aortic stenosis patients or by implantation of LV assist devices in end-stage heart failure patients normalizes not only pulmonary arterial and right ventricular (RV) pressures but also PVR, thus providing indirect evidence for reverse remodeling in the pulmonary vasculature. Using an established rat model of PH-LHD due to left heart failure triggered by pressure overload with subsequent development of PH, a model is developed to study the molecular and cellular mechanisms of this physiological reverse remodeling process. Specifically, an aortic debanding surgery was performed, which resulted in reverse remodeling of the LV myocardium and its unloading. In parallel, complete normalization of RV systolic pressure and significant but incomplete reversal of RV hypertrophy was detectable. This model may present a valuable tool to study the mechanisms of physiological reverse remodeling in the pulmonary circulation and the RV, aiming to develop therapeutic strategies for treating PH-LHD and other forms of PH.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Humanos , Hipertensão Pulmonar/etiologia , Artéria Pulmonar/cirurgia , Circulação Pulmonar/fisiologia , Ratos , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA