Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38592053

RESUMO

Electronic skin (e-skin) is showing a huge potential in human-computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0-300%) and a high gauge factor of 0.27 in 180-300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0-15 kPa with a maximal sensitivity of 1.759 kPa-1. Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20-90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices.

2.
Int J Biol Macromol ; 223(Pt A): 980-1014, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375669

RESUMO

As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.


Assuntos
Lignina , Nanoestruturas , Lignina/química , Polímeros , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA