Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
1.
Cell ; 187(21): 6104-6122.e25, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39276776

RESUMO

A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 µm3 across a volume of 8,000 × 6,000 × 400 µm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.


Assuntos
Imageamento Tridimensional , Animais , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Linfonodos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Masculino , Microscopia Intravital/métodos
2.
Nature ; 616(7956): 390-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020030

RESUMO

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Deinococcus , Endodesoxirribonucleases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , RNA Guia de Sistemas CRISPR-Cas/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/ultraestrutura , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/ultraestrutura , Deinococcus/enzimologia , Deinococcus/genética , Especificidade por Substrato
3.
J Pineal Res ; 76(2): e12948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488331

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.


Assuntos
Ferroptose , Melatonina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/metabolismo , Sirtuína 1/metabolismo , Neurônios Dopaminérgicos , Ferro/metabolismo
4.
Fish Shellfish Immunol ; 144: 109247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006905

RESUMO

Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin ß12, hepcidin, leap 2, ß-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Transcriptoma , Hepcidinas/genética , Hepcidinas/metabolismo , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Peixes/genética , Proteínas de Peixes/química , Galectinas/genética
5.
Fish Shellfish Immunol ; 155: 110003, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39491659

RESUMO

Bacterial septicemia caused by Aeromonas hydrophila is one of the common bacterial diseases in aquaculture. Antimicrobial peptides, including hepcidin, are key components of the innate immune system in fish, playing a role in defense against pathogens. This study investigated the defense patterns of hepcidin in mandarin fish (Siniperca chuatsi) following A. hydrophila infection using gene expression analysis and in vitro antibacterial assays. We measured changes in the expression of iron metabolism-related genes (hepcidin, fpn, ftn, tf, tfr1) and immune-related genes (il-1ß, il-6, il-8, il-10, tnf-α, socs3, nkap, tlr1, tlr2) in the intestine post-infection. MBC experiment demonstrated that the hepcidin synthetic peptide has an inhibitory effect on the growth of V. parahaemolyticus (32 µg/ml), A. hydrophilus (64 µg/ml), and F. columnaris (128 µg/ml), but not E. tarda (>256 µg/ml). After A. hydrophilus challenge, fpn, tf and tfr1 with peak expression at 24 hpi (2.75), 12 hpi (4.43) and 6 hpi (7.41), respectively. Hepcidin and ftn expression was highest at 48 hpi (115.01) and 72 hpi (4.16). The Fe2+ content peaked at 6 hpi (2.64 µmol/l) and reached its lowest at 12 hpi (1.12 µmol/l) in the intestine. After pathogen challenge, il-1ß, il-8, socs3, tlr2, and hepcidin showed trends of increased and then decreased, with peak expression at 72 hpi (5.13, 37.05, 3.08) and 48 hpi (5.35, 115.01), respectively. These findings suggested that hepcidin plays a key role in the defense against A. hydrophila: initially restricting bacterial growth through iron metabolism (0-48 hpi), and later modulating immune responses via the TNF (by inducing il-1ß and socs3) and Toll-like receptor pathways (by inducing il-8 and tlr2) (48-96 hpi). This study provides novel insights into the immune function of hepcidin in fish and its potential application in managing bacterial infections in aquaculture.

6.
Inorg Chem ; 63(4): 1879-1887, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38240218

RESUMO

The development of efficient fluorescent probes and adsorbents for detecting and removing Cu2+, which pose potential environmental and health risks, is a highly active area of research. However, achieving simultaneously improved fluorescence detection efficiency and enhanced adsorption capacity in a single porous probe remains a significant challenge. In this study, we successfully synthesized a two-dimensional imine-based TAP-COF using 2,4,6-triformylphloroglucinol and tri(4-aminophenyl)amine as raw materials. TAP-COF exhibited excellent properties, including a large specific surface area of 685.65 m2·g-1, exceptional thermal stability (>440 °C), chemical stability, temporal stability, and recyclability. Fluorescence testing revealed that TAP-COF exhibited remarkable specificity and high sensitivity for detecting Cu2+. The fluorescence mechanism, in which the excited state intramolecular proton transfer was impeded by the interaction of Cu2+ with C═O and C-N bonds on TAP-COF upon the addition of Cu2+, was further elucidated through experimental and theoretical methods. Furthermore, the adsorption capacity of TAP-COF toward Cu2+ was investigated, confirming the excellence of TAP-COF as a fluorescent probe and adsorbent for the specific detection and removal of Cu2+. This work holds significant implications for improving environmental and human health concerns associated with Cu2+ contamination.

7.
J Biochem Mol Toxicol ; 38(1): e23621, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229320

RESUMO

Gestational diabetes mellitus (GDM), a prevalent complication during the gestation period, has been linked to impaired proliferation and migration of trophoblasts causing placental maldevelopment. We previously found that lncRNA X-inactive specific transcript (XIST) played an essential role in GDM progression. Here, we investigated the precise biological functions as well as the upstream and downstream regulatory mechanisms of XIST in GDM. We found that XIST and forkhead box O1 (FOXO1) were conspicuously upregulated and miR-497-5p and methyltransferase-like 14 (METTL14) were downregulated in the placentas of GDM patients. XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells. METTL14 inhibited XIST expression through m6A methylation modification. XIST overexpression abrogated the positive effect of METTL14 overexpression on HG-cultured HTR8/SVneo cell progression. MiR-497-5p and FOXO1 are downstream regulatory genes of XIST in HTR8/SVneo cells. Reverse experiments illustrated that XIST mediated HTR8/SVneo cell functions by regulating the miR-497-5p/FOXO1 axis. Additionally, XIST silencing augmented glucose tolerance and alleviated fetal detrimental changes in GDM rats. To conclude, METTL14-mediated XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells via the miR-497-5p/FOXO1 axis, thereby alleviating GDM progression in rats.


Assuntos
Diabetes Gestacional , Proteína Forkhead Box O1 , Metiltransferases , MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Humanos , Gravidez , Ratos , Linhagem Celular , Proliferação de Células/genética , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Proteína Forkhead Box O1/metabolismo , Genes Reguladores , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo
8.
Acta Pharmacol Sin ; 45(5): 975-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279042

RESUMO

Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 µM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 µM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.


Assuntos
Artérias Carótidas , Células Endoteliais , Endotélio Vascular , Hipertensão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína ORAI1 , Canais de Cátion TRPC , Animais , Proteína ORAI1/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Canais de Cátion TRPC/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Vasoconstrição/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
9.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267547

RESUMO

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sepse , Animais , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Ratos , Administração Intravenosa
10.
Molecules ; 29(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39202904

RESUMO

CoMn2O4 (CMO) has been recognized as an effective peroxymonosulfate (PMS) activator; however, it still shows disadvantages such as limited reactive sites and metal leakage. Herein, an effective and environmentally friendly composite catalyst, CMO/Kln, was synthesized by anchoring CMO on kaolinite (Kln), a natural clay mineral with a special lamellar structure, to activate peroxymonosulfate (PMS) for the degradation of residue pharmaceuticals in water. The abundant hydroxyl groups located on the surface of Kln helped induce rich oxygen vacancies (OVs) into composite CMO/Kln, which not only acted as additional active sites but also accelerated working efficiency. In addition, compared with bare CMO, CMO/Kln showed lower crystallinity, and the adoption of the Kln substrate contributed to its structural stability with lower metal leaching after three rounds of reaction. The universal applicability of CMO/Kln was also verified by using three other pharmaceuticals as probes. This work shed light on the adoption of natural clay minerals in modifying CMO catalysts with promoted catalytic activity for the efficient and eco-friendly remediation of pharmaceuticals in wastewater.

11.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893440

RESUMO

Three different iridium(III) complexes, labelled as Ir1-Ir3, each bearing a unique anchoring moiety (diethyl [2,2'-bipyridine]-4,4'-dicarboxylate, tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate), or [2,2'-biquinoline]-4,4'-dicarboxylic acid), were synthesized to serve as photosensitizers. Their electrochemical and photophysical characteristics were systematically investigated. ERP measurements were employed to elucidate the impact of the anchoring groups on the photocatalytic hydrogen generation performance of the complexes. The novel iridium(III) complexes were integrated with platinized TiO2 (Pt-TiO2) nanoparticles and tested for their ability to catalyze hydrogen production under visible light. A H2 turnover number (TON) of up to 3670 was obtained upon irradiation for 120 h. The complexes with tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate) anchoring groups were found to outperform those bearing other moieties, which may be one of the important steps in the development of high-efficiency iridium(III) photosensitizers for hydrogen generation by water splitting. Additionally, toxicological analyses found no significant difference in the toxicity to luminescent bacteria of any of the present iridium(III) complexes compared with that of TiO2, which implies that the complexes investigated in this study do not pose a high risk to the aquatic environment compared to TiO2.

12.
Pharmacol Res ; 187: 106565, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414124

RESUMO

A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Inibidores da Topoisomerase II , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
13.
EMBO Rep ; 22(6): e51649, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33855783

RESUMO

Pathological TDP-43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP); however, how TDP-43 aggregation and function are regulated remain poorly understood. Here, we show that O-GlcNAc transferase OGT-mediated O-GlcNAcylation of TDP-43 suppresses ALS-associated proteinopathies and promotes TDP-43's splicing function. Biochemical and cell-based assays indicate that OGT's catalytic activity suppresses TDP-43 aggregation and hyperphosphorylation, whereas abolishment of TDP-43 O-GlcNAcylation impairs its RNA splicing activity. We further show that TDP-43 mutations in the O-GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP-43 overexpression in Drosophila motor neurons. We finally demonstrate that O-GlcNAcylation of TDP-43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O-GlcNAcylation might be a target for the treatment of TDP-43-linked pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Splicing de RNA , RNA Mensageiro/genética
14.
Inflamm Res ; 72(3): 443-462, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598534

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES: Further studies are needed to determine how α-syn works in microglia. METHODS: A keyword-based search was performed using the PubMed database for published articles. CONCLUSION: In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Autofagia , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fagocitose
15.
Inorg Chem ; 62(19): 7525-7532, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133541

RESUMO

Electrocatalytic nitrate reduction reaction (ENO3RR) is an alternative, sustainable, and environmentally friendly value-added NH3 synthesis method under ambient conditions relative to the traditional Haber-Bosch process; however, its low NH3 yield, low Faradaic efficiency (FE), low selectivity, and low conversion rate severely restrict the development. In this work, a Cu2+1O/Ag-CC heterostructured electrocatalyst was successfully fabricated by constructing a heterogeneous interface between Cu2+1O and Ag for selective electrochemical nitrate-to-ammonia conversion. The construction of the heterogeneous interface effectively promotes the synergistic effect of the catalytically active components Cu2+1O and Ag, which enhances the material conductivity, accelerates the interfacial electron transfer, and exposes more active sites, thus improving the performance of ENO3RR. Such Cu2+1O/Ag-CC manifests a high NH3 yield of 2.2 mg h-1 cm-2 and a notable ammonia FE of 85.03% at the optimal applied potential of -0.74 V vs RHE in a relatively low concentration of 0.01 M NO3--containing 0.1 M KOH. Moreover, it shows excellent electrochemical stability during the cycle tests. Our study not only provides an efficient catalyst for ammonia electro-synthesis from ENO3RR but also an effective strategy for the construction of ENO3RR electrocatalysts for electrocatalytic applications.

16.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844031

RESUMO

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Enxofre , Ferro , Fosfatos , Nitrogênio , Processos Autotróficos
17.
Acta Pharmacol Sin ; 44(10): 1977-1988, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37217602

RESUMO

Atherosclerotic diseases remain the leading cause of adult mortality and impose heavy burdens on health systems globally. Our previous study found that disturbed flow enhanced YAP activity to provoke endothelial activation and atherosclerosis, and targeting YAP alleviated endothelial inflammation and atherogenesis. Therefore, we established a luciferase reporter assay-based drug screening platform to seek out new YAP inhibitors for anti-atherosclerotic treatment. By screening the FDA-approved drug library, we identified that an anti-psychotic drug thioridazine markedly suppressed YAP activity in human endothelial cells. Thioridazine inhibited disturbed flow-induced endothelial inflammatory response in vivo and in vitro. We verified that the anti-inflammatory effects of thioridazine were mediated by inhibition of YAP. Thioridazine regulated YAP activity via restraining RhoA. Moreover, administration of thioridazine attenuated partial carotid ligation- and western diet-induced atherosclerosis in two mouse models. Overall, this work opens up the possibility of repurposing thioridazine for intervention of atherosclerotic diseases. This study also shed light on the underlying mechanisms that thioridazine inhibited endothelial activation and atherogenesis via repression of RhoA-YAP axis. As a new YAP inhibitor, thioridazine might need further investigation and development for the treatment of atherosclerotic diseases in clinical practice.


Assuntos
Aterosclerose , Células Endoteliais , Tioridazina , Animais , Humanos , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Inflamação/etiologia , Proteína rhoA de Ligação ao GTP/efeitos dos fármacos , Tioridazina/uso terapêutico , Proteínas de Sinalização YAP/efeitos dos fármacos
18.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896696

RESUMO

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Animais , Pramipexol/uso terapêutico , Pramipexol/metabolismo , Pramipexol/farmacologia , Doença de Parkinson/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BL
19.
Postgrad Med J ; 100(1179): 4-11, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37777187

RESUMO

The multiple hypothesis holds that the pathogenesis of Parkinson's disease (PD) requires many factors such as heredity, environment and ageing. Mutations in Leucine-rich repeat kinase 2 (LRRK2) are recognized the risk factors of PD, and closely related to sporadic and familial PD and can regulate a variety of cellular pathways and processes. An Increasing number of studies has shown that glial hyperactivation-mediated neuroinflammation participates in dopaminergic neuron degeneration and pathogenesis of PD. LRRK2 is essential to the regulaton of chronic inflammation, especially for the central nervous system. The review spotlights on the novel development of LRRK2 on microglia and astrocytes, and explore their potential therapeutic targets, in order to provide a new insights in PD. Key messages: What is already known on this topic The G2019S mutation of LRRK2 is now recognised as a pathogenic mutation in PD. Previous studies have focused on the relationship between neurons and LRRK2 G2019S. What this study adds Neuroinflammation mediated by LRRK2 G2019S of glial cells affects the progress and development of PD and attention must be paid to the role of LRRK2 G2019S in glial cells in PD. How this study might affect research, practice or policy Developing anti-inflammatory drugs from the perspective of LRRK2 G2019S of glial cells is a new direction for the treatment of PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doenças Neuroinflamatórias , Mutação , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
20.
Pol J Pathol ; 74(2): 141-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37728473

RESUMO

Ectopic mammary gland tissue in the vulva is an exceptionally rare disease. We present a case of a 62-year-old woman with a left vulvar mass of 30 years duration that progressively increased in size. The patient reported having pressure and discomfort, especially during movement. Surgical excision was performed, and a histopathological examination revealed a well-differentiated ectopic breast. We also review other cases of vulvar ectopic breast to further comprehend the characteristics of this rare disease.  Clinicians and pathologists should always consider it as a differential diagnosis when presented with a vulvar mass.


Assuntos
Doenças Raras , Vulva , Feminino , Humanos , Pessoa de Meia-Idade , Diagnóstico Diferencial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA