Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197634

RESUMO

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Assuntos
Anafilaxia , Niacina , Camundongos , Animais , Anafilaxia/tratamento farmacológico , Anafilaxia/metabolismo , Niacina/farmacologia , Niacina/metabolismo , Dinoprostona/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Valeratos/metabolismo , Mastócitos/metabolismo , Epigênese Genética , Imunoglobulina E/metabolismo , Degranulação Celular
2.
Immunology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720202

RESUMO

Our newly developed menthyl esters of valine and isoleucine exhibit anti-inflammatory properties beyond those of the well-known menthol in macrophages stimulated by lipopolysaccharide (LPS) and in a mouse model of colitis induced by sodium dextran sulfate. Unlike menthol, which acts primarily through the cold-sensitive TRPM8 channel, these menthyl esters displayed unique mechanisms that operate independently of this receptor. They readily penetrated target cells and efficiently suppressed LPS-stimulated tumour necrosis factor-alpha (Tnf) expression mediated by liver X receptor (LXR), a key nuclear receptor that regulates intracellular cholesterol and lipid balance. The menthyl esters showed affinity for LXR and enhanced the transcriptional activity through their non-competitive and potentially synergistic agonistic effect. This effect can be attributed to the crucial involvement of SCD1, an enzyme regulated by LXR, which is central to lipid metabolism and plays a key role in the anti-inflammatory response. In addition, we discovered that the menthyl esters showed remarkable efficacy in suppressing adipogenesis in 3T3-L1 adipocytes at the mitotic clonal expansion stage in an LXR-independent manner as well as in mice subjected to diet-induced obesity. These multiple capabilities of our compounds establish them as formidable allies in the fight against inflammation and obesity, paving the way for a range of potential therapeutic applications.

3.
Biotechnol Bioeng ; 120(5): 1357-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702621

RESUMO

Betalains, which consist of the subgroups betaxanthins and betacyanins, are hydrophilic pigments that have classically been used for food colorants. Owing to their strong antioxidant property, their usefulness for application for therapeutic use is also expected. In addition, as betalains are mainly naturally available from plants of the order Caryophyllales, including beet (Beta vulgaris), metabolic engineering for betalain production in crops such as vegetables, fruits and cereals may provide new food resources useful for healthcare. Here we conducted metabolic engineering of betacyanins in tomato fruits and potato tubers. The transgenic tomato fruits and potato tubers with coexpression of betacyanin biosynthesis genes, CYP76AD1 from B. vulgaris, DOD (DOPA 4,5-dioxygenase) and 5GT (cyclo-DOPA 5-O-glucosyltransferase) from Mirabilis jalapa, under control of suitable specific promoters, possessed dark red tissues with enriched accumulation of betacyanins (betanin and isobetanin). The anti-inflammatory activity of transgenic tomato fruit extract was superior to that of wild-type fruit extract on macrophage RAW264.7 cells stimulated with lipopolysaccharide (LPS), as a result of decreased LPS-stimulated transcript levels of proinflammatory genes. These findings were in accord with the observation that administration of the transgenic tomato fruits ameliorated dextran sulfate sodium (DSS)-induced colitis as well as body weight loss and disease activity index in mice, via suppression of DSS-stimulated transcript levels of pro-inflammatory genes, including Tnf (encoding TNF-alpha), Il6, and Ptgs2 (encoding cyclooxygenae 2). Intriguingly, given the fact that the transgenic potato tuber extract failed to enrich the anti-inflammatory activity of macrophage cells, it is likely that metabolic engineering of betacyanins will be a powerful way of increasing the anti-inflammatory property of ordinary foods such as tomato.


Assuntos
Betacianinas , Mirabilis , Animais , Camundongos , Betacianinas/análise , Betacianinas/metabolismo , Verduras/metabolismo , Engenharia Metabólica , Mirabilis/metabolismo , Lipopolissacarídeos , Betalaínas/análise , Betalaínas/metabolismo , Extratos Vegetais
4.
J Immunol ; 207(12): 3098-3106, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799426

RESUMO

Rodent mast cells are classified into two major subsets, mucosal mast cells (MMCs) and connective tissue mast cells. MMCs arise from mast cell progenitors that are mobilized from the bone marrow to mucosal tissues in response to allergic inflammation or helminth infection. TGF-ß is known as an inducer of MMC differentiation in mucosal tissues, but we have previously found that Notch receptor-mediated signaling also leads to the differentiation. Here, we examined the relationship between Notch and TGF-ß signaling in MMC differentiation using mouse bone marrow-derived mast cells (BMMCs). We found that the coexistence of Notch and TGF-ß signaling markedly upregulates the expression of MMC markers, mouse mast cell protease (mMCP)-1, mMCP-2, and αE integrin/CD103, more than Notch or TGF-ß signaling alone, and that their signals act interdependently to induce these marker expressions. Notch and TGF-ß-mediated transcription of MMC marker genes were both dependent on the TGF-ß signaling transducer SMAD4. In addition, we also found that Notch signaling markedly upregulated mMCP-1 and mMCP-2 expression levels through epigenetic deregulation of the promoter regions of these genes, but did not affect the promoter of the CD103-encoding gene. Moreover, forced expression of the constitutively active Notch2 intracellular domain in BMMCs showed that Notch signaling promotes the nuclear localization of SMADs 3 and 4 and causes SMAD4-dependent gene transcription. These findings indicate that Notch and TGF-ß signaling play interdependent roles in inducing the differentiation and maturation of MMCs. These roles may contribute to the rapid expansion of the number of MMCs during allergic mucosal inflammation.


Assuntos
Mastócitos , Fator de Crescimento Transformador beta , Animais , Expressão Gênica , Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Mucosa , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983066

RESUMO

In the present study, we evaluated the effects of kaempferol on bone marrow-derived mast cells (BMMCs). Kaempferol treatment significantly and dose-dependently inhibited IgE-induced degranulation, and cytokine production of BMMCs under the condition that cell viability was maintained. Kaempferol downregulated the surface expression levels of FcεRI on BMMCs, but the mRNA levels of FcεRIα, ß, and γ-chains were not changed by kaempferol treatment. Furthermore, the kaempferol-mediated downregulation of surface FcεRI on BMMCs was still observed when protein synthesis or protein transporter was inhibited. We also found that kaempferol inhibited both LPS- and IL-33-induced IL-6 production from BMMCs, without affecting the expression levels of their receptors, TLR4 and ST2. Although kaempferol treatment increased the protein amount of NF-E2-related factor 2 (NRF2)-a master transcription factor of antioxidant stress-in BMMCs, the inhibition of NRF2 did not alter the suppressive effect of kaempferol on degranulation. Finally, we found that kaempferol treatment increased the levels of mRNA and protein of a phosphatase SHIP1 in BMMCs. The kaempferol-induced upregulation of SHIP1 was also observed in peritoneal MCs. The knockdown of SHIP1 by siRNA significantly enhanced IgE-induced degranulation of BMMCs. A Western blotting analysis showed that IgE-induced phosphorylation of PLCγ was suppressed in kaempferol-treated BMMCs. These results indicate that kaempferol inhibited the IgE-induced activation of BMMCs by downregulating FcεRI and upregulating SHIP1, and the SHIP1 increase is involved in the suppression of various signaling-mediated stimulations of BMMCs, such as those associated with TLR4 and ST2.


Assuntos
Mastócitos , Receptores de IgE , Degranulação Celular , Imunoglobulina E/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Quempferóis/farmacologia , Quempferóis/metabolismo , Mastócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Allergol Int ; 72(2): 187-193, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646561

RESUMO

Group 2 innate lymphoid cells (ILC2s) are tissue-resident innate lymphoid cells that express the transcription factor GATA3 as a master regulator, which leads to the production of large amounts of type 2 cytokines, such as IL-5 and IL-13. ILC2s are activated by epithelial cell-derived cytokines, including IL-33 and IL-25, and play a key role in parasite expulsion, allergic responses, tissue repair, and metabolism. In the first five years after the discovery of ILC2s, research mainly focused on their function through cytokine receptors. However, in recent years, their regulatory mechanisms through not only cytokine receptors but also lipids, neuropeptides, and hormones have become a hot topic. For ILC2s that do not recognize foreign antigens, receptor expression of such endogenous factors is important, and the diverse expression patterns create the individuality of ILC2s in each organ. By considering the mechanisms of differentiation and regulation of ILC2s and their role in disease while taking into account spatio-temporal information, it is expected that new therapeutic strategies targeting ILC2s will be developed. Herein, we summarize the current understanding of ILC2s in lung homeostasis and pathology and provide valuable insights that will help to guide the future development of therapeutic methods for ILC2-mediated lung diseases.


Assuntos
Imunidade Inata , Pesquisa Translacional Biomédica , Humanos , Linfócitos , Citocinas/metabolismo , Receptores de Citocinas/metabolismo
7.
J Immunol ; 205(3): 822-829, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611724

RESUMO

PD-L2, which has been identified as a PD-1 ligand, is specifically expressed in dendritic cells (DCs) and macrophages. The transcription factors that determine the cell type-specific expression of PD-L2 are largely unknown, although PD-1 and its ligands, which have been shown to play important roles in T cell suppression, have been vigorously analyzed in the field of cancer immunology. To reveal the mechanism by which Pdcd1lg2 gene expression is regulated, we focused on DCs, which play key roles in innate and acquired immunity. The knockdown of the hematopoietic cell-specific transcription factors PU.1 and IRF4 decreased PD-L2 expression in GM-CSF-induced mouse bone marrow-derived DCs. Chromatin immunoprecipitation assays, luciferase assays, and electrophoretic mobility shift assays demonstrated that PU.1 and IRF4 bound directly to the Pdcd1lg2 gene via an Ets-IRF composite element sequence and coordinately transactivated the Pdcd1lg2 gene. Furthermore, PU.1 knockdown reduced the histone acetylation of the Pdcd1lg2 gene. The knockdown of the typical histone acetyltransferase p300, which has been reported to interact with PU.1, decreased the expression and H3K27 acetylation of the Pdcd1lg2 gene. GM-CSF stimulation upregulated the Pdcd1lg2 gene expression, which was accompanied by an increase in PU.1 binding and histone acetylation in Flt3L-generated mouse bone marrow-derived DCs. The involvement of PU.1, IRF4, and p300 were also observed in mouse splenic DCs. Overall, these results indicate that PU.1 positively regulates Pdcd1lg2 gene expression as a transactivator and an epigenetic regulator in DCs.


Assuntos
Células Dendríticas/imunologia , Epigênese Genética/imunologia , Fatores Reguladores de Interferon/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transativadores/imunologia , Ativação Transcricional/imunologia , Animais , Células Dendríticas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C
8.
J Immunol ; 204(6): 1641-1649, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32005755

RESUMO

Mouse mast cell proteases (mMCP)-1 and -2 are specifically expressed in mucosal mast cells (MCs). However, the transcriptional regulation mechanism of the Mcpt1 and Mcpt2 genes induced in mucosal MCs is largely unknown. In the current study, we found that TGF-ß stimulation drastically induced upregulation of Mcpt1 and Mcpt2 mRNA in mouse bone marrow-derived MCs (BMMCs). TGF-ß-induced expression of Mcpt1 and Mcpt2 was markedly suppressed by transfection with small interfering RNA targeting Smad2 or Smad4 and moderately reduced by Smad3 small interfering RNA. We next examined the roles of the hematopoietic cell-specific transcription factors GATA1 and GATA2 in the expression of Mcpt1 and Mcpt2 and demonstrated that knockdown of GATA1 and GATA2 reduced the mRNA levels of Mcpt1 and Mcpt2 in BMMCs. The recruitment of GATA2 and acetylation of histone H4 of the highly conserved GATA-Smad motifs, which were localized in the distal regions of the Mcpt1 and Mcpt2 genes, were markedly increased by TGF-ß stimulation, whereas the level of GATA2 binding to the proximal GATA motif was not affected by TGF-ß. A reporter assay showed that TGF-ß stimulation upregulated GATA2-mediated transactivation activity in a GATA-Smad motif-dependent manner. We also observed that GATA2 and Smad4 interacted in TGF-ß-stimulated BMMCs via immunoprecipitation and Western blotting analysis. Taken together, these results demonstrate that TGF-ß induced mMCP-1 and -2 expression by accelerating the recruitment of GATA2 to the proximal regions of the Mcpt1 and Mcpt2 genes in mucosal MCs.


Assuntos
Quimases/genética , Imunidade nas Mucosas/genética , Mastócitos/imunologia , Ativação Transcricional/imunologia , Animais , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mastócitos/metabolismo , Camundongos , Mucosa/citologia , Mucosa/imunologia , Cultura Primária de Células , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/imunologia
9.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955959

RESUMO

Mast cells (MCs) play key roles in IgE-mediated immunoresponses, including in the protection against parasitic infections and the onset and/or symptoms of allergic diseases. IgE-mediated activation induces MCs to release mediators, including histamine and leukotriene, as an early response, and to produce cytokines as a late phase response. Attempts have been made to identify novel antiallergic compounds from natural materials such as Chinese medicines and food ingredients. We herein screened approximately 60 compounds and identified salicylaldehyde, an aromatic aldehyde isolated from plant essential oils, as an inhibitor of the IgE-mediated activation of MCs. A degranulation assay, flow cytometric analyses, and enzyme-linked immunosorbent assays revealed that salicylaldehyde inhibited the IgE-mediated degranulation and cytokine expression of bone-marrow-derived MCs (BMMCs). The salicylaldehyde treatment reduced the surface expression level of FcεRI, the high affinity receptor for IgE, on BMMCs, and suppressed the IgE-induced phosphorylation of tyrosine residues in intercellular proteins, possibly Lyn, Syk, and Fyn, in BMMCs. We also examined the effects of salicylaldehyde in vivo using passive anaphylaxis mouse models and found that salicylaldehyde administration significantly enhanced the recovery of a reduced body temperature due to systemic anaphylaxis and markedly suppressed ear swelling, footpad swelling, and vascular permeability in cutaneous anaphylaxis.


Assuntos
Anafilaxia , Mastócitos , Aldeídos/metabolismo , Anafilaxia/tratamento farmacológico , Anafilaxia/metabolismo , Animais , Degranulação Celular , Citocinas/metabolismo , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Camundongos , Receptores de IgE/metabolismo , Transdução de Sinais
10.
Int Immunol ; 32(2): 143-150, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630176

RESUMO

Mast cells (MCs) play a central role in IgE-dependent immune responses. PPARγ is a nuclear receptor that is essential for adipocyte differentiation and insulin sensitivity. Although PPARγ is expressed in activated MCs, the effect of PPARγ suppression in IgE-mediated activation of MCs is largely unknown. In the current study, we evaluated the effect of PPARγ knockdown on the function of IgE plus antigen (Ag)-stimulated MCs using siRNA-transfected bone marrow-derived MCs (BMMCs). We found that the mRNA expression level of cytokines in IgE/Ag-stimulated BMMCs was significantly increased in PPARγ knockdown BMMCs, and IgE/Ag-mediated degranulation and the protein production level of TNF-α was moderately increased by PPARγ knockdown, whereas the cell surface expression level of FcεRI was not affected by PPARγ knockdown. Oral administration of pioglitazone (PPARγ agonist) significantly suppressed body temperature change of mice in passive systemic anaphylaxis, supporting the inhibitory functions of PPARγ in IgE/Ag-dependent activation of MCs in vivo. IgE-mediated up-regulation of mRNA levels of Ptgs2 (encoding COX-2) was drastically enhanced in PPARγ knockdown BMMCs. Although several prostaglandin (PG) derivatives are known to be ligands for PPARγ, treatment with a COX inhibitor, acetyl salicylic acid, up-regulated the IgE-mediated increase of Il13, Tnf and Ptgs2 mRNA levels in a synergistic manner with PPARγ siRNA. Knockdown of COX-1 and/or COX-2 by siRNA showed that suppression of IgE/Ag-mediated activation was mainly dependent on COX-1. Taken together, these results indicate that PPARγ suppresses IgE/Ag-induced transactivation of cytokine genes and the Ptgs2 gene in MCs in a manner distinguishable from that of PGs.


Assuntos
Células da Medula Óssea/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , PPAR gama/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/agonistas , PPAR gama/deficiência , RNA Interferente Pequeno/farmacologia
11.
FASEB J ; 34(11): 14810-14819, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964554

RESUMO

Dendritic cells (DCs) and T cells play important roles in immune regulation, and modulating their function is an approach for developing preventive or therapeutic strategies against immune disorders. Herein, the effect of pterostilbene (PSB) (3',5'-dimethoxy-resveratrol)-a resveratrol-related polyphenol found in blueberries-on immune regulation was evaluated. Using an in vitro co-culture system, PSB was found to exert the strongest inhibitory effect among all tested resveratrol derivatives on DC-mediated T cell proliferation; moreover, PSB treatment decreased the Th1 and Th17 populations and increased the regulatory T cell (Treg) population. Upon co-stimulation with anti-CD3 and anti-CD28 antibodies, PSB inhibited CD4+ T cell proliferation and differentiation into Th1 cells. Additionally, PSB acted on DCs to suppress the lipopolysaccharide-induced transactivation of genes encoding antigen presentation-related molecules and inflammatory cytokines by attenuating the DNA-binding ability of the transcription factor PU.1. Furthermore, PSB promoted DC-mediated Foxp3+ Treg differentiation, and PU.1 knockdown increased DC-induced Treg activity. Oral administration of PSB alleviated the symptoms of dextran sulfate sodium-induced colitis and decreased tumor necrosis factor-α expression in mice. Thus, PSB treatment ameliorates colonic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Células Dendríticas/imunologia , Estilbenos/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Proliferação de Células , Células Cultivadas , Colite Ulcerativa/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo , Estilbenos/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia , Células Th1/imunologia , Células Th1/fisiologia , Células Th17/imunologia , Células Th17/fisiologia , Transativadores/metabolismo
12.
Biochem Biophys Res Commun ; 530(1): 342-347, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828309

RESUMO

We evaluated the effect of gut bacterial metabolites of polyunsaturated fatty acids on inflammation and found that 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC) strikingly suppressed LPS-induced IL-6 release from bone marrow-derived macrophages (BMMs), which was accompanied by reduced mRNA expression of Il6, TNF, and Il1b. γKetoC decreased the cAMP concentration in BMMs, suggesting that γKetoC stimulated G protein-coupled receptors. A Gq agonist significantly suppressed LPS-induced IL-6 expression in BMMs, whereas a Gi inhibitor partially abrogated γKetoC-mediated IL-6 suppression. Cytosolic Ca2+ was markedly increased by γKetoC, which was partly but not fully abrogated by an ion channel inhibitor. Taken together, these data suggest that γKetoC suppresses inflammatory cytokine expression in macrophages primarily through Gq and partially through Gi. γKetoC suppressed osteoclast development and IL-6 expression in synovial fibroblasts from rheumatoid arthritis (RA) patients, suggesting the beneficial effect of γKetoC on the prevention or treatment of RA.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Microbioma Gastrointestinal , Lactobacillales/metabolismo , Monócitos/metabolismo , Animais , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Proteção , Células RAW 264.7
13.
FASEB J ; 33(10): 11481-11491, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314592

RESUMO

C-C chemokine receptor type 7 (CCR7) is essential for migration of dendritic cells (DCs) to draining lymph nodes. PU.1/Spi1 is a transcription factor playing a critical role in the gene regulation of DCs. PU.1 knockdown decreased the expression of CCR7 in bone marrow-derived DCs and subsequently attenuated migration in vitro and in vivo. Reporter assays, EMSA, and chromatin immunoprecipitation assays revealed that PU.1 binds to the most proximal Ets motif of the Ccr7 promoter, which is involved in transcriptional activation. The CCR7 expression level, which was higher in the programmed cell death 1 ligand 2 (PD-L2)+ population than in the PD-L2- population and was markedly suppressed by TGF-ß treatment, coincided with the binding level of PU.1 to the Ccr7 promoter. The PU.1 binding level in CCR7high mesenteric lymph nodes DCs was higher than in other DC subtypes. The involvement of PU.1 in the expression of the CCR7 gene was also observed in human DCs. We conclude that PU.1 plays a pivotal role in DC migration by transactivating the CCR7 gene via the Ets motif in the promoter in both humans and mice.-Yashiro, T., Takeuchi, H., Nakamura, S., Tanabe, A., Hara, M., Uchida, K., Okumura, K., Kasakura, K., Nishiyama, C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression.


Assuntos
Movimento Celular/genética , Células Dendríticas/fisiologia , Linfonodos/fisiologia , Tecido Linfoide/fisiologia , Proteínas Proto-Oncogênicas/genética , Receptores CCR7/genética , Transativadores/genética , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética
14.
J Immunol ; 201(12): 3677-3682, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413670

RESUMO

RALDH2 expressed in dendritic cells (DCs) plays a critical role in the development of regulatory T cells in mesenteric lymph nodes. Despite the importance of RALDH2 in intestinal immunity, little is known about the mechanism of DC-specific expression of RALDH2. In the current study, we focused on the hematopoietic cell-specific transcription factors PU.1 and IRF4 as the determinants of Aldh1a2 gene expression. The mRNA level of Aldh1a2, and subsequently the enzyme activity, were decreased by knockdown of PU.1 and IRF4 in bone marrow-derived DCs (BMDCs) of BALB/c mice. Chromatin immunoprecipitation assays showed that PU.1 and IRF4 bound to the Aldh1a2 gene ∼2 kb upstream from the transcription start site in BMDCs. A reporter assay and an EMSA revealed that the Aldh1a2 promoter was synergistically transactivated by a heterodimer composed with PU.1 and IRF4 via the EICE motif at -1961/-1952 of the gene. The effect of small interfering RNAs for Spi1 and Irf4 and specific binding of PU.1 and IRF4 on the Aldh1a2 gene were also observed in DCs freshly isolated from spleen and mesenteric lymph nodes, respectively. GM-CSF stimulation upregulated the Aldh1a2 transcription in Flt3 ligand-generated BMDCs, in which the IRF4 expression and the PU.1 recruitment to the Aldh1a2 promoter were enhanced. We conclude that PU.1 and IRF4 are transactivators of the Aldh1a2 gene in vitro and ex vivo.


Assuntos
Células Dendríticas/fisiologia , Fatores Reguladores de Interferon/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T Reguladores/imunologia , Transativadores/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Retinal Desidrogenase , Transativadores/genética , Ativação Transcricional , Tirosina Quinase 3 Semelhante a fms/imunologia
15.
J Immunol ; 199(8): 2958-2967, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893954

RESUMO

NR4A3/NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, which is activated in a ligand-independent manner. To examine the role of NR4A3 in gene expression of dendritic cells (DCs), we introduced NR4A3 small interfering RNA (siRNA) into bone marrow-derived DCs and determined the expression levels of mRNA and proteins of cytokines, cell surface molecules, NF-κB signaling-related proteins, and transcription factors. The expression level of NR4A3 was markedly upregulated by TLR-mediated stimulation in DCs. NR4A3 knockdown significantly suppressed LPS, CpG, or poly(I:C)-mediated upregulation of CD80, CD86, IL-10, IL-6, and IL-12. Proliferation and IL-2 production levels of T cells cocultured with NR4A3 knocked-down DCs were significantly lower than that of T cells cocultured with control DCs. Furthermore, the expression of IKKß, IRF4, and IRF8 was significantly decreased in NR4A3 siRNA-introduced bone marrow-derived DCs. The knockdown experiments using siRNAs for IKKß, IRF4, and/or IRF8 indicated that LPS-induced upregulation of IL-10 and IL-6 was reduced in IKKß knocked-down cells, and that the upregulation of IL-12 was suppressed by the knockdown of IRF4 and IRF8. Taken together, these results indicate that NR4A3 is involved in TLR-mediated activation and gene expression of DCs.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/imunologia , Ativação Linfocitária , Proteínas do Tecido Nervoso/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais , Receptores Toll-Like/imunologia
16.
Biosci Biotechnol Biochem ; 83(6): 1111-1116, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30898076

RESUMO

The immunosuppressive activity of myriocin (ISP-1), a lead compound of fingolimod (FTY720), is derived from its 2-amino-1,3-propandiol structure. A non-proteinogenic amino acid, (2S,6R)-diamino-(5R,7)-dihydroxy-heptanoic acid (DADH), that contains this structure, was recently identified as a biosynthetic intermediate of a dipeptide secondary metabolite, vazabitide A, in Streptmyces sp. SANK 60404; however its effect on adaptive immunity has not yet been examined. In this study, we examined whether DADH suppresses mixed lymphocyte reaction using mouse bone marrow-derived dendritic cells (BMDCs) and allogeneic splenic T cells. Although T cell proliferation induced by cross-linking CD3 and CD28 were not suppressed by DADH unlike ISP-1, the pre-incubation of BMDCs with DADH but not ISP-1 significantly decreased allogeneic CD8+ T cell expansion. Based on these results, we concluded that DADH suppresses DC-mediated T cell activation by targeting DCs.


Assuntos
Aminoácidos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Streptomyces/química , Linfócitos T/efeitos dos fármacos , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
17.
Int Immunol ; 29(2): 87-94, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338898

RESUMO

PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene.


Assuntos
Antígeno CD11c/metabolismo , Células Dendríticas/fisiologia , Hematopoese , Fatores Reguladores de Interferon/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Antígeno CD11c/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Hematopoese/genética , Histonas/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Transativadores/genética , Ativação Transcricional
19.
J Immunol ; 192(8): 3936-46, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639354

RESUMO

The high-affinity IgE receptor, FcεRI, which is composed of α-, ß-, and γ-chains, plays an important role in IgE-mediated allergic responses. In the current study, involvement of the transcription factors, PU.1, GATA1, and GATA2, in the expression of FcεRI on human mast cells was investigated. Transfection of small interfering RNAs (siRNAs) against PU.1, GATA1, and GATA2 into the human mast cell line, LAD2, caused significant downregulation of cell surface expression of FcεRI. Quantification of the mRNA levels revealed that PU.1, GATA1, and GATA2 siRNAs suppressed the α transcript, whereas the amount of ß mRNA was reduced in only GATA2 siRNA transfectants. In contrast, γ mRNA levels were not affected by any of the knockdowns. Chromatin immunoprecipitation assay showed that significant amounts of PU.1, GATA1, and GATA2 bind to the promoter region of FCER1A (encoding FcεRIα) and that GATA2 binds to the promoter of MS4A2 (encoding FcεRIß). Luciferase assay and EMSA showed that GATA2 transactivates the MS4A2 promoter via direct binding. These knockdowns of transcription factors also suppressed the IgE-mediated degranulation activity of LAD2. Similarly, all three knockdowns suppressed FcεRI expression in primary mast cells, especially PU.1 siRNA and GATA2 siRNA, which target FcεRIα and FcεRIß, respectively. From these results, we conclude that PU.1 and GATA1 are involved in FcεRIα transcription through recruitment to its promoter, whereas GATA2 positively regulates FcεRIß transcription. Suppression of these transcription factors leads to downregulation of FcεRI expression and IgE-mediated degranulation activity. Our findings will contribute to the development of new therapeutic approaches for FcεRI-mediated allergic diseases.


Assuntos
Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de IgE/genética , Transativadores/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Imunoprecipitação da Cromatina , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/genética , Técnicas de Silenciamento de Genes , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Ativação Transcricional
20.
Allergol Int ; 64(3): 241-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26117255

RESUMO

BACKGROUND: The transcription factors NFATc1 and PU.1 play important roles in osteoclast development. NFATc1 and PU.1 transactivate osteoclast-specific gene expression and a deficiency in NFATc1 or PU.1 genes causes osteopetrosis due to an insufficient development of osteoclasts. However, the existence of cross-regulation between NFATc1 and PU.1 is largely unknown. In the present study, the role of PU.1 in NFATc1 expression was investigated. METHODS: Osteoclasts were generated from mouse bone marrow cells. PU.1 knockdown was performed with siRNA introduction. The mRNA levels in siRNA-introduced cells were determined by quantitative RT-PCR. The involvement of PU.1 in the NFATc1 promoter was analyzed by using a chromatin immunoprecipitation (ChIP) assay and a reporter assay. Retrovirus vector was used for enforced expression of PU.1. RESULTS: Introduction of PU.1 siRNA into bone marrow-derived osteoclasts resulted in a decrease in NFATc1 mRNA level. A ChIP assay showed that PU.1 bound to the NFATc1 promoter in osteoclasts. NFATc1 promoter activity was reduced in PU.1 knockdown cells as assessed by a reporter assay. PU.1 siRNA introduction also downregulated the expression of osteoclast-specific genes and tartrate resistant acid phosphatase (TRAP) activity. Enforced expression of PU.1 using a retrovirus vector increased NFATc1 expression and TRAP activity. When NFATc1 expression was knocked down by using siRNA, the induction of osteoclast-specific genes and TRAP-positive cells was suppressed without affecting the expression level of PU.1. CONCLUSIONS: These results indicate that PU.1 is involved in osteoclast development by transactivating NFATc1 expression via direct binding to the NFATc1 promoter.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Osteoporose/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos , Fatores de Transcrição NFATC/genética , Osteoporose/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Transativadores/genética , Ativação Transcricional , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA