Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 98(12): 3175-3187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29023679

RESUMO

Ecosystem function is the outcome of species interactions, traits, and niche overlap - all of which are influenced by evolution. However, it is not well understood how the tempo and mode of niche evolution can influence ecosystem function. In evolutionary models where either species differences accumulate through random drift in a single trait or species differences accumulate through divergent selection among close relatives, we should expect that ecosystem function is strongly related to diversity. However, when strong selection causes species to converge on specific niches or when novel traits that directly affect function evolve in some clades but not others, the relationship between diversity and ecosystem function might not be very strong. We test these ideas using a field experiment that established plant mixtures with differing phylogenetic diversities and we measured ten different community functions. We show that some functions were strongly predicted by species richness and mean pairwise phylogenetic distance (MPD, a measure of phylogenetic diversity), including biomass production and the reduction of herbivore and pathogen damage in polyculture, while other functions had weaker (litter production and structural complexity) or nonsignificant relationships (e.g., flower production and arthropod abundance) with MPD and richness. However, these divergent results can be explained by different models of niche evolution. These results show that diversity-ecosystem function relationships are the product of evolution, but that the nature of how evolution influences ecosystem function is complex.


Assuntos
Biodiversidade , Ecossistema , Animais , Artrópodes , Biomassa , Filogenia
2.
Nat Commun ; 14(1): 3949, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402739

RESUMO

Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.


Assuntos
Pradaria , Herbivoria , Animais , Banco de Sementes , Solo , Plantas , Nutrientes , Ecossistema , Mamíferos
3.
Evol Appl ; 11(10): 2014-2024, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459845

RESUMO

Plant species and functional trait diversity have each been shown to improve green roof services. Species and trait differences that contribute to ecosystem services are the product of past evolutionary change and phylogenetic diversity (PD), which quantifies the relatedness among species within a community. In this study, we present an experimental framework to assess the contribution of plant community PD for green roof ecosystem service delivery, and data from one season that support our hypotheses that PD would be positively correlated with two services: building cooling and rainwater management. Using 28 plant species in 12 families, we created six community combinations with different levels of PD. Each of these communities was replicated at eight green roofs along an elevation gradient, as well as a ground level control. We found that the minimum and mean roof temperature decreased with increasing PD in the plant community. Increasing PD also led to an increase in the volume of rainwater captured, but not the proportion of water lost via evapotranspiration 48 hr following the rain event. Our findings suggest that considering these evolutionary relationships could improve functioning of green infrastructure and we recommend that understanding how to make PD (and other measures of diversity) serviceable for plant selection by practitioners will improve the effectiveness of design and ecosystem service delivery. Lastly, since no two green roof sites are the same and can vary tremendously in microclimate conditions, our study illustrates the importance of including multiple independent sites in studies of green roof performance.

4.
Trends Ecol Evol ; 30(9): 510-1, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26190136

RESUMO

Species traits influence where species live and how they interact. While there have been many advances in describing the functional composition and diversity of communities, only recently do researchers have the ability to predict community composition and diversity. This predictive ability can offer fundamental insights into ecosystem resilience and restoration.


Assuntos
Ecossistema , Modelos Biológicos , Biodiversidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA