RESUMO
A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.
Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , HumanosRESUMO
Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.
Assuntos
Gangliosídeo G(M3)/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/genética , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Monócitos/química , Obesidade/genética , Multimerização Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genéticaRESUMO
The tricuspid annulus (TA) is the primary target of tricuspid valve (TV) surgery for tricuspid regurgitation (TR). However, the reference values for TA geometry in the Japanese population is currently unavailable. We aimed to elucidate the geometric reference values of the TA in Japanese individuals using 3-dimensional (3D) echocardiography.We conducted a prospective study using transthoracic 3D echocardiography on 142 healthy Japanese subjects aged between 20 and 79 years. The tricuspid geometric parameters in the late-diastole and the mid-systole were analyzed using custom 3D software (Realview™).After excluding 46 subjects with poor images, data from 96 subjects (67.6%) were analyzed. TA area and circumference showed strong correlations with body surface area (BSA) (P < 0.001 for all), while some of these parameters exhibited weak correlations with age. Gender differences in TV geometry were assessed across 3 age groups: 20-39 years (42 subjects), 40-59 years (28 subjects), and 60-79 years (26 subjects). In the youngest subjects (20-39 years), males had a significantly larger TA area and smaller anterior-posterior and medial-lateral diameters (P < 0.001 for all), even after adjusting for BSA, indicating gender differences of TA geometry. These differences diminished with age.We present reference values for TA geometry by age and gender in a Japanese cohort. BSA may be a suitable metric for indexing the TA parameters. While age-related changes in TA parameters may not be significant, gender differences, particularly in younger individuals, persist even after adjusting for BSA.
Assuntos
Ecocardiografia Tridimensional , Insuficiência da Valva Tricúspide , Valva Tricúspide , Humanos , Masculino , Feminino , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/anatomia & histologia , Pessoa de Meia-Idade , Adulto , Ecocardiografia Tridimensional/métodos , Idoso , Japão , Estudos Prospectivos , Valores de Referência , Adulto Jovem , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Fatores Etários , Fatores Sexuais , População do Leste AsiáticoRESUMO
Comprehensive cancer genome profiling (CGP) has been nationally reimbursed in Japan since June 2019. Less than 10% of the patients have been reported to undergo recommended treatment. Todai OncoPanel (TOP) is a dual DNA-RNA panel as well as a paired tumor-normal matched test. Two hundred patients underwent TOP as part of Advanced Medical Care B with approval from the Ministry of Health, Labour and Welfare between September 2018 and December 2019. Tests were carried out in patients with cancers without standard treatment or when patients had already undergone standard treatment. Data from DNA and RNA panels were analyzed in 198 and 191 patients, respectively. The percentage of patients who were given therapeutic or diagnostic recommendations was 61% (120/198). One hundred and four samples (53%) harbored gene alterations that were detected with the DNA panel and had potential treatment implications, and 14 samples (7%) had a high tumor mutational burden. Twenty-two samples (11.1%) harbored 30 fusion transcripts or MET exon 14 skipping that were detected by the RNA panel. Of those 30 transcripts, 6 had treatment implications and 4 had diagnostic implications. Thirteen patients (7%) were found to have pathogenic or likely pathogenic germline variants and genetic counseling was recommended. Overall, 12 patients (6%) received recommended treatment. In summary, patients benefited from both TOP DNA and RNA panels while following the same indication as the approved CGP tests. (UMIN000033647).
Assuntos
Genômica , Neoplasias , Humanos , Japão , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de PrecisãoRESUMO
There is a global concern about the safety of COVID-19 vaccines associated with platelet function. However, their long-term effects on overall platelet activity remain poorly understood. Here we address this problem by image-based single-cell profiling and temporal monitoring of circulating platelet aggregates in the blood of healthy human subjects, before and after they received multiple Pfizer-BioNTech (BNT162b2) vaccine doses over a time span of nearly 1 year. Results show no significant or persisting platelet aggregation trends following the vaccine doses, indicating that any effects of vaccinations on platelet turnover, platelet activation, platelet aggregation, and platelet-leukocyte interaction was insignificant.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , COVID-19/prevenção & controle , Plaquetas , Vacinação/efeitos adversosRESUMO
Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis samples, resulting in a total of 6.3 million bright-field images. We trained a convolutional neural network to distinguish single platelets, platelet aggregates, and white blood cells and performed classical image analysis for each subpopulation individually. Based on derived single-cell features for each population, we trained machine learning models for classification between COVID-19 and non-COVID-19 thrombosis, resulting in a patient testing accuracy of 75%. This result indicates that platelet formation differs between COVID-19 and non-COVID-19 thrombosis. All analysis steps were optimized for efficiency and implemented in an easy-to-use plugin for the image viewer napari, allowing the entire analysis to be performed within seconds on mid-range computers, which could be used for real-time diagnosis.
Assuntos
COVID-19 , Trombose , Humanos , Plaquetas , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS: We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS: The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION: ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Assuntos
Ácido Eicosapentaenoico , Osteopontina , Humanos , Camundongos , Animais , Apolipoproteínas D/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Anti-Inflamatórios/farmacologia , Lisofosfolipídeos/metabolismo , Eicosanoides , Esfingosina/metabolismoRESUMO
Bioactive lipids, such as lysophospholipids, ceramides, and eicosanoids and related mediators, have been demonstrated to be involved in inflammation. We aimed to investigate the possible orchestral modulations of these bioactive lipids in human inflammation. We simultaneously measured the urinary levels of lysophospholipids, ceramides, and eicosanoids and related mediators by a liquid chromatography-mass spectrometry method in patients with cystitis and control subjects. The urinary levels of lysophosphatidylcholine, lysophosphatidylethanolamine, sphingosine 1-phosphate, ceramides, prostaglandin (PG)E2 and its metabolites represented by tetranor-PGEM, several oxylipins, DHA, and lysoPAF were higher in patients with cystitis. Urinary levels of some species of glycerolysophospholipids were highly positively correlated with those of other species of the same glycerolysophospholipids. Cluster analyses revealed that lysophosphatidylcholine was close to a PGE2 metabolite, lysophosphatidylethanolamine was close to DHA, and sphingosine 1-phosphate and ceramides were close to lysoPAF. The orchestral dynamism of the lipid mediators was observed in the urine of cystitis, suggesting the necessity for simultaneous investigation of lipid mediators for translational research.
Assuntos
Cistite , Bexiga Urinária , Humanos , Bexiga Urinária/química , Bexiga Urinária/metabolismo , Lisofosfatidilcolinas , Eicosanoides/metabolismo , Lisofosfolipídeos/metabolismo , Ceramidas , Inflamação/metabolismo , DinoprostonaRESUMO
Some patients with diabetic kidney disease (DKD) show a fast progression of kidney dysfunction and are known as a "fast decliner" (FD). Therefore, it is critical to understand pathomechanisms specific for fast decline. Here, we performed a comprehensive metabolomic analysis of patients with stage G3 DKD and identified increased urinary lysophosphatidylcholine (LPC) in fast decline. This was confirmed by quantification of urinary LPC using mass spectrometry and identified urinary LPC containing saturated fatty acids palmitic (16:0) and stearic (18:0) acids was increased in FDs. The upsurge in urinary LPC levels was correlated with a decline in estimated glomerular filtration rate after 2.5 years. To clarify a pathogenic role of LPC in FD, we studied an accelerated rat model of DKD and observed an increase in LPC (16:0) and (18:0) levels in the urine and kidney tubulointerstitium as the disease progressed. These findings suggested that local dysregulation of lipid metabolism resulted in excessive accumulation of this LPC species in the kidney. Our in vitro studies also confirmed LPC-mediated lipotoxicity in cultured proximal tubular cells. LPC induced accumulation of lipid droplets via activation of peroxisome proliferator-activated receptor-δ followed by upregulation of the lipid droplet membrane protein perilipin 2 and decreased autophagic flux, thereby inducing organelle stress and subsequent apoptosis. Thus, LPC (16:0) and (18:0) may mediate a fast progression of DKD and may serve as a target for novel therapeutic approaches.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/patologia , Taxa de Filtração Glomerular , Humanos , Rim/patologia , Lisofosfatidilcolinas/metabolismo , RatosRESUMO
Lysophosphatidylinositol (LPI) is a glycero-lysophospholipid and a natural agonist against GPR55. The roles of the LPI/GPR55 axis in the pathogenesis of inflammation have been controversial. In the present study, we attempted to elucidate the roles of the LPI/GPR55 axis in inflammation, especially the secretion of inflammatory cytokines, IL-6 and TNF-α from macrophages. We treated RAW264.7 cells and mouse peritoneal macrophages (MPMs) with LPI and observed that LPI induced the secretion of IL-6 and TNF-α from these cells, as well as the phosphorylation of p38. These responses were inhibited by treatment with CID16020046 (CID), an antagonist against GPR55, or SB202190, an inhibitor of p38 cascade or knockdown of GPR55 with siRNA. Treatment with CID or ML-193, another antagonist against GPR55, attenuated the elevation of inflammatory cytokines in the plasma or tissue of db/db mice and in a septic mouse model induced using lipopolysaccharide, suggesting contributions to the improvement of insulin resistance and protection against organ injuries by treatment with CID or ML-193, respectively. In human subjects, although the serum LPI levels were not different, the levels of LPI in the lipoprotein fractions were lower and the levels in the lipoprotein-depleted fractions were higher in subjects with diabetes. LPI bound to albumin induced the secretion of IL-6 and TNF-α from RAW264.7 cells to a greater degree than LPI bound to LDL or HDL. These results suggest that LPI, especially the albumin-bound form, induced inflammatory cytokines depending on the GPR55/p38 pathway, which might contribute to the pathogenesis of obesity-induced inflammation and acute inflammation.
Assuntos
Albuminas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Mediadores da Inflamação/metabolismo , Lisofosfolipídeos/farmacologia , Macrófagos/imunologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Among various complications of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), renal complications, namely COVID-19-associated kidney injuries, are related to the mortality of COVID-19. METHODS: In this retrospective cross-sectional study, we measured the sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties, using liquid chromatography-mass spectrometry in 272 urine samples collected longitudinally from 91 COVID-19 subjects and 95 control subjects without infectious diseases, to elucidate the pathogenesis of COVID-19-associated kidney injuries. RESULTS: The urinary levels of C18:0, C18:1, C22:0, and C24:0 ceramides, sphingosine, dihydrosphingosine, phosphatidylcholine, lysophosphatidylcholine, lysophosphatidic acid, and phosphatidylglycerol decreased, while those of phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, and lysophosphatidylethanolamine increased in patients with mild COVID-19, especially during the early phase (day 1-3), suggesting that these modulations might reflect the direct effects of infection with SARS-CoV-2. Generally, the urinary levels of sphingomyelin, ceramides, sphingosine, dihydrosphingosine, dihydrosphingosine L-phosphate, phosphatidylcholine, lysophosphatidic acid, phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylglycerol, phosphatidylinositol, and lysophosphatidylinositol increased, especially in patients with severe COVID-19 during the later phase, suggesting that their modulations might result from kidney injuries accompanying severe COVID-19. CONCLUSIONS: Considering the biological properties of sphingolipids and glycerophospholipids, an understanding of their urinary modulations in COVID-19 will help us to understand the mechanisms causing COVID-19-associated kidney injuries as well as general acute kidney injuries and may prompt researchers to develop laboratory tests for predicting maximum severity and/or novel reagents to suppress the renal complications of COVID-19.
Assuntos
COVID-19 , Esfingolipídeos , Humanos , COVID-19/complicações , Glicerofosfolipídeos , Esfingosina , Fosfatidiletanolaminas , SARS-CoV-2 , Fosfatidilserinas , Estudos Retrospectivos , Estudos Transversais , Ceramidas , Rim , Fosfatidilgliceróis , FosfatidilcolinasRESUMO
BACKGROUND: The importance of autotaxin, an enzyme that catalyzes lysophospholipid production, has recently been recognized in various diseases, including cancer and autoimmune diseases. Herein, we examined the role of autotaxin in systemic lupus erythematosus (SLE), utilizing data from ImmuNexUT, a comprehensive database consisting of transcriptome data and expression quantitative trait locus (eQTL) data of immune cells from patients with immune-mediated disorders. METHODS: Serum autotaxin concentrations in patients with SLE and healthy controls (HCs) were compared. The transcriptome data of patients with SLE and age- and sex-matched HCs were obtained from ImmuNexUT. The expression of ENPP2, the gene encoding autotaxin, was examined in peripheral blood immune cells. Next, weighted gene correlation network analysis (WGCNA) was performed to identify genes with expression patterns similar to ENPP2. The ImmuNexUT eQTL database and public epigenomic databases were used to infer the relationship between autotaxin and pathogenesis of SLE. RESULTS: Autotaxin levels were elevated in the serum of patients with SLE compared to HCs. Furthermore, the expression of ENPP2 was higher in plasmacytoid dendritic cells (pDCs) than in other immune cell subsets, and its expression was elevated in pDCs of patients with SLE compared to HCs. In WGCNA, ENPP2 belonged to a module that correlated with disease activity. This module was enriched in interferon-associated genes and included genes whose expression was influenced by single-nucleotide polymorphisms associated with SLE, suggesting that it is a key module connecting genetic risk factors of SLE with disease pathogenesis. Analysis utilizing the ImmuNexUT eQTL database and public epigenomic databases suggested that the increased expression of ENPP2 in pDCs from patients with SLE may be caused by increased expression of interferon-associated genes and increased binding of STAT3 complexes to the regulatory region of ENPP2. CONCLUSIONS: Autotaxin may play a critical role in connecting genetic risk factors of SLE to disease pathogenesis in pDCs.
Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Células Dendríticas/metabolismo , Interferons , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Antivirais , Fatores de RiscoRESUMO
BACKGROUND AND AIM: Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). METHOD: First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules. RESULTS: Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, aspartate aminotransferase, alanine aminotransferase, platelet count, and albumin data) reached 96.30% and 0.994, respectively. CONCLUSION: Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool for the definitive diagnosis of liver tumors using B-mode US.
Assuntos
Neoplasias Hepáticas , Área Sob a Curva , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação , Ultrassonografia/métodosRESUMO
INTRODUCTION: The usefulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests in asymptomatic individuals has not been well validated, although they have satisfied sensitivity and specificity in symptomatic patients. In this study, we investigated the significance of IgM and IgG antibody titers against SARS-CoV-2 in the serum of asymptomatic healthy subjects. METHODS: From June 2020, we recruited 10,039 participants to the project named the University of Tokyo COVID-19 Antibody Titer Survey (UT-CATS), and measured iFlash-SARS-CoV-2 IgM and IgG (YHLO IgM and IgG) titers in the collected serum. For the samples with increased IgM or IgG titers, we performed additional measurements using Elecsys Anti-SARS-CoV-2 Ig (Roche total Ig) and Architect SARS-CoV-2 IgG (Abbott IgG) and investigated the reactivity to N, S1, and receptor binding domain (RBD) proteins. RESULTS: After setting the cutoff value at 5 AU/mL, 61 (0.61%) were positive for YHLO IgM and 104 (1.04%) for YHLO IgG. Few samples with elevated YHLO IgM showed reactivity to S1 or RBD proteins, and IgG titers did not increase during the follow-up in any samples. The samples with elevated YHLO IgG consisted of two groups: one reacted to S1 or RBD proteins and the other did not, which was reflected in the results of Roche total Ig. CONCLUSIONS: In SARS-CoV-2 seroepidemiological studies of asymptomatic participants, sufficient attention should be given to the interpretation of the results of YHLO IgM and IgG, and the combined use of YHLO IgG and Roche total Ig might be more reliable.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Voluntários Saudáveis , Humanos , Imunoglobulina G , Imunoglobulina M , Estudos SoroepidemiológicosRESUMO
Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to â¼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.
Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Microalgas/citologia , Microalgas/metabolismo , Coloração e RotulagemRESUMO
Autotaxin (ATX) is an enzymatic with lysophospholipase D (lysoPLD) activity. We investigated the role of ATX in high glucose (HG)-induced human retinal pigment epithelial (ARPE-19) cells to explore the pathogenesis of diabetic retinopathy (DR). We performed a quantitative real-time polymerase chain reaction, Western blotting, immunocytochemistry, enzyme-linked immunosorbent assay, cell permeability assay, and transepithelial electrical resistance measurement in HG-induced ARPE-19 cells and compared their results with those of normal glucose and osmotic pressure controls. ATX expression and its lysoPLD activity, barrier function, and expression of vascular endothelial growth factor receptors VEGFR-1 and VEGFR-2 were downregulated, while fibrotic responses, cytoskeletal reorganization, and transforming growth factor-ß expression were upregulated, in the HG group. Our results suggest that HG induces intracellular ATX downregulation, barrier dysfunction, and fibrosis, which are involved in early DR and can be targeted for DR treatment.
Assuntos
Retinopatia Diabética , Diester Fosfórico Hidrolases , Epitélio Pigmentado da Retina , Linhagem Celular , Retinopatia Diabética/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The role of oxidative stress in the pathogenesis of various diseases has been attracting attention. We speculated as to whether the redox state of treatment solutions used for various diseases may play a role in treatment success. In the current study, we focused on the human embryo culture medium used for in vitro fertilization (IVF). A total of 173 oocytes from a total of 91 patients treated with IVF were enrolled. The redox state was assessed by measuring the levels of human non-mercaptalbumin (HNA). We analyzed factors related to blastocyst formation on day 5 or 6 after insemination. We also developed a random forest (RF) model for the prediction of blastocyst formation. The variable importance in the predictive model was assessed using the mean decrease in the Gini impurity. Blastocyst formation was observed in 41.04% (71/173) of the oocytes and was associated with a lower %HNA in the culture medium, a younger patient age, and the fertilization method (standard IVF or intracytoplasmic sperm injection). The RF model developed using these factors and 70% of the samples (training set, nâ =â 121) was validated in the remaining testing set (nâ =â 52) and produced an area under the curve of 0.761, where the %HNA in the culture medium was the most important variable for predicting blastocyst formation. In conclusion, lower levels of oxidative stress in embryo culture media were associated with the success of IVF treatment. The redox state of treatment solutions should be considered to support treatment success.
RESUMO
OBJECTIVES: We encountered the case in whom the results of autoantibodies tests became transiently positive after high-dose immunoglobulin therapy and investigated the effect of administration of these preparations on autoantibodies tests in subjects with autoimmune diseases who had received high-dose immunoglobulin therapy. METHODS: We measured the autoantibodies in residual serum samples after routine clinical testing from eight subjects with autoimmune diseases who had received high-dose immunoglobulin therapy. We also measured the autoantibodies in available immunoglobulin preparations. RESULTS: Tests for autoantibodies conducted before and after immunoglobulin therapy revealed a positive conversion of the results for anti-Sjogren's syndrome antigen A (SS-A) antibody, anti-glutamic acid decarboxylase (GAD) antibody, anti-thyroglobulin (Tg) antibody, and anti-thyroid peroxidase (TPO) antibody. In five cases in which changes in the antibody titres of anti-SS-A antibody after the high-dose immunoglobulin administration, it was found that the titres decreased by about 50% from 10 to 20 days after and the test result became negative 25- 30 days later. CONCLUSIONS: In patients receiving high-dose immunoglobulin therapy, there appears to be a high likelihood of positive conversion of tests for anti-SS-A antibody, GAD antibody, Tg antibody, and TPO antibody after the treatment, so that cautious interpretation of the results is of importance.
Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Autoanticorpos , HumanosRESUMO
Lysophosphatidic acid (LPA) is a potent signaling lipid, and state-dependent alterations in plasma LPA make it a promising diagnostic marker for various diseases. However, plasma LPA concentrations vary widely among reports, even under normal conditions. These variations can be attributed, at least in part, to the artificial metabolism of LPA after blood collection. Here, we aimed to develop an optimized plasma preparation method that reflects the concentration of LPA in the circulating blood. The main features of the devised method were suppression of both LPA production and degradation after blood collection by keeping whole blood samples at low temperature followed by the addition of an autotaxin inhibitor to plasma samples. Using this devised method, the LPA level did not change for 30 min after blood collection. Also, human and mouse LPA levels were found to be much lower than those previously reported, ranging from 40 to 50 nM with minimal variation across the individual. Finally, the increased accuracy made it possible to detect circadian rhythms in the levels of certain LPA species in mouse plasma. These results demonstrate the usefulness of the devised plasma preparation method to determine accurate plasma LPA concentrations.
Assuntos
LisofosfolipídeosRESUMO
Diabetic nephropathy is a major complication of diabetes mellitus, and thus novel biomarkers are desired to evaluate the presence and progression of diabetic nephropathy. In this study, we sought to identify possible metabolites related to diabetic nephropathy among urinary eicosanoids and related mediators. Using liquid chromatogram-tandem mass spectrometry, we optimized the lipid extraction from urine using the Monospin C18 as a solid-phase extraction cartridge and measured the urinary lipid mediators in 111 subjects with type 2 diabetes mellitus as well as 33 healthy subjects. We observed that 14 metabolites differed significantly among the clinical stages of nephropathy. Among them, levels of tetranor-prostaglandin E metabolite (tetranor-PGEM), an arachidonic acid metabolite, were significantly higher in subjects with stage 1 nephropathy than in healthy subjects and increased with the progression of nephropathy. We also observed that levels of maresin-1, a docosahexaenoic acid metabolite, and leukotriene B4-ethanolamide, an arachidonoyl ethanolamide metabolite, were significantly lower in subjects with stage 3-4 nephropathy than in healthy subjects and those with stage 1-2 nephropathy. Finally, using a comprehensive analysis of urinary eicosanoids and related mediators, we concluded that tetranor-PGEM was capable of discriminating clinical stages of nephropathy and thus useful as a novel biomarker for diabetic nephropathy.