Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 158, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440048

RESUMO

BACKGROUND: Several nervous and nerve-related biomarkers have been detected in colorectal cancer (CRC) and can contribute to the progression of CRC. However, the role of leucine-rich repeat neuronal 4 (LRRN4), a recently identified neurogenic marker, in CRC remains unclear. METHODS: We examined the expression and clinical outcomes of LRRN4 in CRC from TCGA-COREAD mRNA-sequencing datasets and immunohistochemistry in a Chinese cohort. Furthermore, colony formation, flow cytometry, wound healing assays and mouse xenograft models were used to investigate the biological significance of LRRN4 in CRC cell lines with LRRN4 knockdown or overexpression in vitro and in vivo. In addition, weighted coexpression network analysis, DAVID and western blot analysis were used to explore the potential molecular mechanism. RESULTS: We provide the first evidence that LRRN4 expression, at both the mRNA and protein levels, was remarkably high in CRC compared to controls and positively correlated with the clinical outcome of CRC patients. Specifically, LRRN4 was an independent prognostic factor for progression-free survival and overall survival in CRC patients. Further functional experiments showed that LRRN4 promoted cell proliferation, cell DNA synthesis and cell migration and inhibited apoptosis. Knockdown of LRRN4 can correspondingly decrease these effects in vitro and can significantly suppress the growth of xenografts. Several biological functions and signaling pathways were regulated by LRRN4, including proteoglycans in cancer, glutamatergic synapse, Ras, MAPK and PI3K. LRRN4 knockdown resulted in downregulation of Akt, p-Akt, ERK1/2 and p-ERK1/2, the downstream of the Ras/MAPK signaling pathway, overexpression of LRRN4 leaded to the upregulation of these proteins. CONCLUSIONS: Our results suggest that LRRN4 could be a biological and molecular determinant to stratify CRC patients into distinct risk categories, and mechanistically, this is likely attributable to LRRN4 regulating several malignant phenotypes of neoplastic cells via RAS/MAPK signal pathways.

2.
Heliyon ; 10(15): e35529, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166023

RESUMO

Previously we have identified that the expression number and levels of oncogenes and antioncogenes are highly positively or negatively associated with major cellular progress in a cancer cell. However, we have not defined any cellular potentials of a human tumor cell at the level of the overall gene expression. Here, we counted the overall number of expression genes and overall counts of mRNA in depth and revealed that the expression levels of mRNA were directly associated with the expression number of genes in a human tumor cell. Gene expression networks revealed steady states of tricarboxylic acid (TCA) cycle and ATP production, differentiation potentials that might be disturbed and blocked by uncertain gene expressing networks, and potential capabilities to undergo epithelial-mesenchymal transition (EMT), neurogenesis, angiogenesis, inflammatory response, immune evasion, and metastasis in a human tumor cell. Our analysis identifies unpredictable gene expression characteristics in human tumor cells. The results might profoundly influence mechanisms how a human tumor cell generates and undergoes its progresses.

3.
Front Immunol ; 15: 1326370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566993

RESUMO

Background: While a few case-control studies indicated a possible correlation of IgG N-glycosylation patterns with pancreatitis, their restricted sample sizes and methodologies prevented conclusive insights into causality or distinguishing traits across pancreatitis types. Method: We conducted a two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between 77 IgG N-glycosylation traits and various types of pancreatitis, including acute pancreatitis (AP), chronic pancreatitis (CP), alcohol acute pancreatitis (AAP), and alcohol chronic pancreatitis (ACP). This analysis utilized summary-level data from genome-wide association studies (GWAS), employing methods such as IVW, MR-Egger, and weighted median. To ensure the robustness of our findings, several sensitivity analyses, including Cochran's Q statistic, leave-one-out, MR-Egger intercept, and MR-PRESSO global test were conducted. Result: Our study uncovered the causal relationship between specific IgG N-glycosylation traits and various types of pancreatitis. Notably, an increase in genetically predicted IGP7 levels was associated with a decreased risk of developing AP. For CP, our data suggested a protective effect associated with higher levels of both IGP7 and IGP31, contrasting with increased levels of IGP27 and IGP65, which were linked to a heightened risk. Moreover, in the case of AAP, elevated IGP31 levels were causatively associated with a lower incidence, while higher IGP26 levels correlated with an increased risk for ACP. Conclusion: This study establishes causal relationship between specific IgG N-glycosylation patterns and varying risks of different pancreatitis forms, underscoring their potential as predictive biomarkers. These findings necessitate further exploration into the underlying mechanisms, promising to inform more personalized diagnostic and therapeutic strategies in pancreatitis management.


Assuntos
Imunoglobulina G , Pancreatite Crônica , Humanos , Doença Aguda , Etanol , Estudo de Associação Genômica Ampla , Glicosilação , Pancreatite Crônica/genética , Análise da Randomização Mendeliana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA