Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 147(7): 074111, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830182

RESUMO

An efficient low-frequency logarithmic discretization (LFLD) scheme for the decomposition of fermionic reservoir spectrum is proposed for the investigation of quantum impurity systems. The scheme combines the Padé spectrum decomposition (PSD) and a logarithmic discretization of the residual part in which the parameters are determined based on an extension of the recently developed minimum-dissipaton ansatz [J. J. Ding et al., J. Chem. Phys. 145, 204110 (2016)]. A hierarchical equations of motion (HEOM) approach is then employed to validate the proposed scheme by examining the static and dynamic system properties in both the Kondo and noninteracting regimes. The LFLD scheme requires a much smaller number of exponential functions than the conventional PSD scheme to reproduce the reservoir correlation function and thus facilitates the efficient implementation of the HEOM approach in extremely low temperature regimes.

2.
J Chem Phys ; 142(10): 104112, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770531

RESUMO

Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov-Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.

3.
J Phys Chem Lett ; 9(9): 2418-2425, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29685031

RESUMO

The precise tuning of local spin states in adsorbed organometallic molecules by a mechanically controlled scanning tunneling microscope (STM) tip has become a focus of recent experiments. However, the underlying mechanisms remain somewhat unclear. We investigate theoretically the STM tip control of local spin states in a single iron(II) porphyrin molecule adsorbed on the Pb(111) substrate. A combined density functional theory and hierarchical equations of motion approach is employed to simulate the tip tuning process in conjunction with the complete active space self-consistent field method for accurate computation of magnetic anisotropy. Our first-principles-based simulation accurately reproduces the tuning of magnetic anisotropy realized in experiment. Moreover, we elucidate the evolution of geometric and electronic structures of the composite junction and disclose the delicate competition between the Kondo resonance and local spin excitation. The understanding and insight provided by the first-principles-based simulation may help to realize more fascinating quantum state manipulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA