Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 33: 2627-2638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536683

RESUMO

Visual intention understanding is a challenging task that explores the hidden intention behind the images of publishers in social media. Visual intention represents implicit semantics, whose ambiguous definition inevitably leads to label shifting and label blemish. The former indicates that the same image delivers intention discrepancies under different data augmentations, while the latter represents that the label of intention data is susceptible to errors or omissions during the annotation process. This paper proposes a novel method, called Label-aware Calibration and Relation-preserving (LabCR) to alleviate the above two problems from both intra-sample and inter-sample views. First, we disentangle the multiple intentions into a single intention for explicit distribution calibration in terms of the overall and the individual. Calibrating the class probability distributions in augmented instance pairs provides consistent inferred intention to address label shifting. Second, we utilize the intention similarity to establish correlations among samples, which offers additional supervision signals to form correlation alignments in instance pairs. This strategy alleviates the effect of label blemish. Extensive experiments have validated the superiority of the proposed method LabCR in visual intention understanding and pedestrian attribute recognition. Code is available at https://github.com/ShiQingHongYa/LabCR.

2.
IEEE Trans Med Imaging ; PP2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012729

RESUMO

Existing deep learning methods have achieved remarkable results in diagnosing retinal diseases, showcasing the potential of advanced AI in ophthalmology. However, the black-box nature of these methods obscures the decision-making process, compromising their trustworthiness and acceptability. Inspired by the concept-based approaches and recognizing the intrinsic correlation between retinal lesions and diseases, we regard retinal lesions as concepts and propose an inherently interpretable framework designed to enhance both the performance and explainability of diagnostic models. Leveraging the transformer architecture, known for its proficiency in capturing long-range dependencies, our model can effectively identify lesion features. By integrating with image-level annotations, it achieves the alignment of lesion concepts with human cognition under the guidance of a retinal foundation model. Furthermore, to attain interpretability without losing lesion-specific information, our method employs a classifier built on a cross-attention mechanism for disease diagnosis and explanation, where explanations are grounded in the contributions of human-understandable lesion concepts and their visual localization. Notably, due to the structure and inherent interpretability of our model, clinicians can implement concept-level interventions to correct the diagnostic errors by simply adjusting erroneous lesion predictions. Experiments conducted on four fundus image datasets demonstrate that our method achieves favorable performance against state-of-the-art methods while providing faithful explanations and enabling conceptlevel interventions. Our code is publicly available at https://github.com/Sorades/CLAT.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38691434

RESUMO

This article studies an emerging practical problem called heterogeneous prototype learning (HPL). Unlike the conventional heterogeneous face synthesis (HFS) problem that focuses on precisely translating a face image from a source domain to another target one without removing facial variations, HPL aims at learning the variation-free prototype of an image in the target domain while preserving the identity characteristics. HPL is a compounded problem involving two cross-coupled subproblems, that is, domain transfer and prototype learning (PL), thus making most of the existing HFS methods that simply transfer the domain style of images unsuitable for HPL. To tackle HPL, we advocate disentangling the prototype and domain factors in their respective latent feature spaces and then replacing the source domain with the target one for generating a new heterogeneous prototype. In doing so, the two subproblems in HPL can be solved jointly in a unified manner. Based on this, we propose a disentangled HPL framework, dubbed DisHPL, which is composed of one encoder-decoder generator and two discriminators. The generator and discriminators play adversarial games such that the generator embeds contaminated images into a prototype feature space only capturing identity information and a domain-specific feature space, while generating realistic-looking heterogeneous prototypes. Experiments on various heterogeneous datasets with diverse variations validate the superiority of DisHPL.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38917282

RESUMO

Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties. Recently, with the popularity of federated learning, an influx of approaches have delivered towards different realistic challenges. In this survey, we provide a systematic overview of the important and recent developments of research on federated learning. Firstly, we introduce the study history and terminology definition of this area. Then, we comprehensively review three basic lines of research: generalization, robustness, and fairness, by introducing their respective background concepts, task settings, and main challenges. We also offer a detailed overview of representative literature on both methods and datasets. We further benchmark the reviewed methods on several well-known datasets. Finally, we point out several open issues in this field and suggest opportunities for further research. We also provide a public website to continuously track developments in this fast advancing field: https://github.com/WenkeHuang/MarsFL.

5.
Ophthalmol Ther ; 13(5): 1125-1144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416330

RESUMO

INTRODUCTION: Inaccurate, untimely diagnoses of fundus diseases leads to vision-threatening complications and even blindness. We built a deep learning platform (DLP) for automatic detection of 30 fundus diseases using ultra-widefield fluorescein angiography (UWFFA) with deep experts aggregation. METHODS: This retrospective and cross-sectional database study included a total of 61,609 UWFFA images dating from 2016 to 2021, involving more than 3364 subjects in multiple centers across China. All subjects were divided into 30 different groups. The state-of-the-art convolutional neural network architecture, ConvNeXt, was chosen as the backbone to train and test the receiver operating characteristic curve (ROC) of the proposed system on test data and external test date. We compared the classification performance of the proposed system with that of ophthalmologists, including two retinal specialists. RESULTS: We built a DLP to analyze UWFFA, which can detect up to 30 fundus diseases, with a frequency-weighted average area under the receiver operating characteristic curve (AUC) of 0.940 in the primary test dataset and 0.954 in the external multi-hospital test dataset. The tool shows comparable accuracy with retina specialists in diagnosis and evaluation. CONCLUSIONS: This is the first study on a large-scale UWFFA dataset for multi-retina disease classification. We believe that our UWFFA DLP advances the diagnosis by artificial intelligence (AI) in various retinal diseases and would contribute to labor-saving and precision medicine especially in remote areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA