Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 17, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31926564

RESUMO

BACKGROUND: Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer's disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. METHODS: Adult male C57BL/6 J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test, and foot-fault test were evaluated on days 1, 3, 5, and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl's and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. RESULTS: Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5, and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume, and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk, and p-Syk expression was increased following the 3-h OGD and 0, 3, and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. CONCLUSION: Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.


Assuntos
Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Acidente Vascular Cerebral/metabolismo , Quinase Syk/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia
2.
Stroke ; 49(1): 165-174, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212737

RESUMO

BACKGROUND AND PURPOSE: Lrp4 (low-density lipoprotein receptor-related protein 4) is predominantly expressed in astrocytes, where it regulates glutamatergic neurotransmission by suppressing ATP release. Here, we investigated Lrp4's function in ischemia/stroke-induced brain injury response, which includes glutamate-induced neuronal death and reactive astrogliosis. METHODS: The brain-specific Lrp4 conditional knockout mice (Lrp4GFAP-Cre), astrocytic-specific Lrp4 conditional knockout mice (Lrp4GFAP-creER), and their control mice (Lrp4f/f) were subjected to photothrombotic ischemia and the transient middle cerebral artery occlusion. After ischemia/stroke, mice or their brain samples were subjected to behavior tests, brain histology, immunofluorescence staining, Western blot, and quantitative real-time polymerase chain reaction. In addition, primary astrocytes and neurons were cocultured with or without oxygen and glucose deprivation and in the presence or absence of the antagonist for adenosine-A2AR (adenosine A2A receptor) or ATP-P2X7R (P2X purinoceptor 7) signaling. Gliotransmitters, such as glutamate, d-serine, ATP, and adenosine, in the condition medium of cultured astrocytes were also measured. RESULTS: Lrp4, largely expressed in astrocytes, was increased in response to ischemia/stroke. Both Lrp4GFAP-Cre and Lrp4GFAP-creER mice showed less brain injury, including reduced neuronal death, and impaired reactive astrogliosis. Mechanistically, Lrp4 conditional knockout in astrocytes increased ATP release and the production of ATP derivative, adenosine, which were further elevated by oxygen and glucose deprivation. Pharmacological inhibition of ATP-P2X7R or adenosine-A2AR signaling diminished Lrp4GFAP-creER's protective effect. CONCLUSIONS: The astrocytic Lrp4 plays an important role in ischemic brain injury response. Lrp4 deficiency in astrocytes seems to be protective in response to ischemic brain injury, likely because of the increased ATP release and adenosine-A2AR signaling.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/genética , Animais , Astrócitos/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Proteínas Relacionadas a Receptor de LDL , Camundongos , Camundongos Knockout , Receptor A2A de Adenosina/genética , Receptores de LDL/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
3.
Pharmacogenomics ; 25(1): 21-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38131213

RESUMO

The study analyzes the risk factors associated with antituberculosis drug-induced liver injury (ATB-DILI), and the relationship between ATB-DILI and NAT2 gene polymorphisms. Out of the 324 included patients, 57 (17.59%) developed ATB-DILI. Age, history of liver disease, alcohol consumption and timing of antituberculosis (ATB) treatment were independent risk factors for ATB-DILI in the patients with tuberculosis (TB; p < 0.05). There was a significant difference in the distribution of NAT2 metabolic phenotypes between the study group and the control group (p < 0.05). The ATB drug treatment for pulmonary TB can cause a high incidence of ATB-DILI. Age, history of liver disease, alcohol consumption and timing of ATB treatment are independent risk factors for ATB-DILI in patients with TB.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/complicações , Genótipo , Fatores de Risco
4.
Front Pharmacol ; 14: 1171353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719844

RESUMO

Background: Considering the genetic characteristics of people with anti-tuberculosis (TB)-drug-induced liver injury (ATDILI), genetic factors and their consequences for treatment need to be studied. Objective: The correlation between N-acetyltransferase 2 (NAT2) genetic polymorphisms and ATDILI was analysed. Methods: In this study, the liver and coagulation functions of 120 patients with TB were monitored dynamically for at least 3 months. The genetic polymorphisms of patients were detected by pyrosequencing, and the acetylation types of liver damage and the distribution of NAT2 genetic polymorphisms were compared and analysed. Results: The results showed that there were significant differences in the distribution of alleles and acetylation types among different groups (p < 0.05). In patients with grade 4 liver injury (liver failure), any two alleles were included, i.e., *6 and *7. Specifically, patients with fast acetylation genotypes accounted for 42.4% (14/33), those with intermediate acetylated genotypes accounted for 55.2% (32/58), and patients with slow acetylation genotypes accounted for 65.5% (19/29). Conclusion: Patients with slow acetylation genotypes had higher rates of liver failure and liver injury than those with intermediate and fast acetylation genotypes, and patients with slow acetylation genotypes containing any two alleles (*6 and *7) had a higher rate of liver failure than those with other alleles. In summary, the time of liver injury in patients with slow acetylation genotypes was earlier than the total average time, and the time of liver function recovery in patients with fast acetylation genotypes was shorter than the total average time.

5.
Cell Death Dis ; 13(5): 466, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585040

RESUMO

Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.


Assuntos
Oxirredutases Intramoleculares , AVC Isquêmico , Fatores Inibidores da Migração de Macrófagos , Doenças do Sistema Nervoso , Neurônios , Acetilação , Animais , Aspirina/farmacologia , Desacetilase 6 de Histona/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/patologia
6.
J Natl Med Assoc ; 113(2): 212-217, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33268103

RESUMO

OBJECTIVE: To investigate and evaluate the clinical features of patients infected with the 2019 novel coronavirus (COVID-19) outside of Wuhan. METHODS: 105 patients admitted to our hospital with clinical- and laboratory-confirmed COVID-19 infection were studied. Data were collected from January 17, 2020 to March 5, 2020. RESULTS: 105 patients (57 male and 48 female) were confirmed to have COVID-19 infection. Among the 105 patients, 55 (52%) had made short trips to Wuhan during the two weeks before the onset of illness, and these were the first-generation confirmed cases. An exact date of close contact with someone in Wenzhou with confirmed or suspected COVID-19 infection from Wuhan (the second-generation confirmed cases) could be provided by 38 (36%) patients. Of the remaining patients, six (6%; the third-generation confirmed cases) were familial clusters of the second-generation confirmed cases, three (3%) had no definite epidemiological features, and 16 (15%) were from the same location as for the case report. CONCLUSION: Due to the infectiousness of COVID-19, patients with infections should be diagnosed and treated as early as possible after developing fever symptoms or showing other clinical characteristics or imaging features. With respect to high-risk cases, we must focus on any complications that arise and take effective measures to treat them immediately. This will significantly improve the prognosis of patients with severe infections.


Assuntos
Antivirais/administração & dosagem , COVID-19 , Hospitalização/estatística & dados numéricos , Metilprednisolona/administração & dosagem , Avaliação de Sintomas , Adulto , Anti-Inflamatórios/administração & dosagem , COVID-19/epidemiologia , COVID-19/fisiopatologia , COVID-19/terapia , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , China/epidemiologia , Busca de Comunicante/métodos , Busca de Comunicante/estatística & dados numéricos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Avaliação de Processos e Resultados em Cuidados de Saúde , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Avaliação de Sintomas/métodos , Avaliação de Sintomas/estatística & dados numéricos , Tempo para o Tratamento , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos
7.
Pain ; 162(7): 1960-1976, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34130310

RESUMO

ABSTRACT: The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.


Assuntos
Adenosina , Metiltransferases , Animais , Dor/genética , RNA , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA