Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669364

RESUMO

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Assuntos
Diagnóstico por Imagem , Humanos , Microscopia Crioeletrônica
2.
Trends Biochem Sci ; 46(5): 406-416, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33446424

RESUMO

Bacterial microcompartments (MCPs) are extremely large (100-400 nm) and diverse proteinaceous organelles that compartmentalize multistep metabolic pathways, increasing their efficiency and sequestering toxic and/or volatile intermediates. This review highlights recent studies that have expanded our understanding of the diversity, structure, function, and potential biotechnological uses of MCPs. Several new types of MCPs have been identified and characterized revealing new functions and potential new associations with human disease. Recent structural studies of MCP proteins and recombinant MCP shells have provided new insights into MCP assembly and mechanisms and raised new questions about MCP structure. We also discuss recent work on biotechnology applications that use MCP principles to develop nanobioreactors, nanocontainers, and molecular scaffolds.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Redes e Vias Metabólicas , Organelas/metabolismo
3.
Microbiology (Reading) ; 169(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971493

RESUMO

Bacterial microcompartments (MCPs) are widespread protein-based organelles that play important roles in the global carbon cycle and in the physiology of diverse bacteria, including a number of pathogens. MCPs consist of metabolic enzymes encapsulated within a protein shell. The main roles of MCPs are to concentrate enzymes together with their substrates (to increase reaction rates) and to sequester harmful metabolic intermediates. Prior studies indicate that MCPs have a selectively permeable protein shell, but the mechanisms that allow selective transport across the shell are not fully understood. Here we examine transport across the shell of the choline utilization (Cut) MCP of Escherichia coli 536, which has not been studied before. The shell of the Cut MCP is unusual in consisting of one pentameric and four hexameric bacterial microcompartment (BMC) domain proteins. It lacks trimeric shell proteins, which are thought to be required for the transport of larger substrates and enzymatic cofactors. In addition, its four hexameric BMC domain proteins are very similar in amino acid sequence. This raises questions about how the Cut MCP mediates the selective transport of the substrate, products and cofactors of choline metabolism. In this report, site-directed mutagenesis is used to modify the central pores (the main transport channels) of all four Cut BMC hexamers to assess their transport roles. Our findings indicate that a single shell protein, CmcB, plays the major role in choline transport across the shell of the Cut MCP and that the electrostatic properties of the CmcB pore also impact choline transport. The implications of these findings with regard to the higher-order structure of MCPs are discussed.


Assuntos
Proteínas de Bactérias , Colina , Proteínas de Bactérias/metabolismo , Colina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/metabolismo , Sequência de Aminoácidos , Organelas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(50): 31817-31823, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239442

RESUMO

Diverse efforts in protein engineering are beginning to produce novel kinds of symmetric self-assembling architectures, from protein cages to extended two-dimensional (2D) and three-dimensional (3D) crystalline arrays. Partial theoretical frameworks for creating symmetric protein materials have been introduced, but no complete system has been articulated. Only a minute fraction of the possible design space has been explored experimentally, in part because that space has not yet been described in theory. Here, in the form of a multiplication table, we lay out a complete rule set for materials that can be created by combining two chiral oligomeric components (e.g., proteins) in precise configurations. A unified system is described for parameterizing and searching the construction space for all such symmetry-combination materials (SCMs). In total, 124 distinct types of SCMs are identified, and then proven by computational construction. Mathematical properties, such as minimal ring or circuit size, are established for each case, enabling strategic predictions about potentially favorable design targets. The study lays out the theoretical landscape and detailed computational prescriptions for a rapidly growing area of protein-based nanotechnology, with numerous underlying connections to mathematical networks and chemical materials such as metal organic frameworks.


Assuntos
Modelos Químicos , Nanotecnologia/métodos , Engenharia de Proteínas/métodos , Proteínas/química , Simulação por Computador , Estruturas Metalorgânicas/química , Proteínas/genética
5.
J Am Chem Soc ; 144(28): 12681-12689, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802879

RESUMO

Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.


Assuntos
Peptídeo Hidrolases , Proteínas , Biotecnologia , Endopeptidases , Estudos Prospectivos
6.
Proc Natl Acad Sci U S A ; 115(13): 3362-3367, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29507202

RESUMO

Current single-particle cryo-electron microscopy (cryo-EM) techniques can produce images of large protein assemblies and macromolecular complexes at atomic level detail without the need for crystal growth. However, proteins of smaller size, typical of those found throughout the cell, are not presently amenable to detailed structural elucidation by cryo-EM. Here we use protein design to create a modular, symmetrical scaffolding system to make protein molecules of typical size suitable for cryo-EM. Using a rigid continuous alpha helical linker, we connect a small 17-kDa protein (DARPin) to a protein subunit that was designed to self-assemble into a cage with cubic symmetry. We show that the resulting construct is amenable to structural analysis by single-particle cryo-EM, allowing us to identify and solve the structure of the attached small protein at near-atomic detail, ranging from 3.5- to 5-Å resolution. The result demonstrates that proteins considerably smaller than the theoretical limit of 50 kDa for cryo-EM can be visualized clearly when arrayed in a rigid fashion on a symmetric designed protein scaffold. Furthermore, because the amino acid sequence of a DARPin can be chosen to confer tight binding to various other protein or nucleic acid molecules, the system provides a future route for imaging diverse macromolecules, potentially broadening the application of cryo-EM to proteins of typical size in the cell.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Substâncias Macromoleculares/ultraestrutura , Proteínas/ultraestrutura , Modelos Moleculares , Conformação Proteica
7.
Nature ; 569(7756): 340-342, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31076733

Assuntos
Ouro , Proteínas
8.
Nature ; 510(7503): 103-8, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24870237

RESUMO

The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.


Assuntos
Nanoestruturas/química , Proteínas/química , Simulação por Computador , Cristalografia por Raios X , Desenho de Fármacos , Modelos Moleculares , Nanoestruturas/ultraestrutura , Subunidades Proteicas/química , Proteínas/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 112(10): 2990-5, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713376

RESUMO

Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. Here, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Organelas/metabolismo , Proteínas de Bactérias/química , Glicerol/metabolismo , Propilenoglicol/metabolismo , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 112(28): 8529-36, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124102

RESUMO

The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.


Assuntos
Biocombustíveis , Produtos Agrícolas/fisiologia , Abastecimento de Alimentos , Fotossíntese
11.
Mol Microbiol ; 101(5): 770-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27561553

RESUMO

Bacterial microcompartments (MCPs) are complex organelles that consist of metabolic enzymes encapsulated within a protein shell. In this study, we investigate the function of the PduJ MCP shell protein. PduJ is 80% identical in amino acid sequence to PduA and both are major shell proteins of the 1,2-propanediol (1,2-PD) utilization (Pdu) MCP of Salmonella. Prior studies showed that PduA mediates the transport of 1,2-PD (the substrate) into the Pdu MCP. Surprisingly, however, results presented here establish that PduJ has no role 1,2-PD transport. The crystal structure revealed that PduJ was nearly identical to that of PduA and, hence, offered no explanation for their differential functions. Interestingly, however, when a pduJ gene was placed at the pduA chromosomal locus, the PduJ protein acquired a new function, the ability to mediate 1,2-PD transport into the Pdu MCP. To our knowledge, these are the first studies to show that that gene location can determine the function of a MCP shell protein. We propose that gene location dictates protein-protein interactions essential to the function of the MCP shell.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella enterica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Ordem dos Genes , Genômica/métodos , Modelos Moleculares , Organelas/enzimologia , Organelas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Salmonella enterica/enzimologia , Salmonella enterica/genética , Relação Estrutura-Atividade
12.
Mol Microbiol ; 98(2): 193-207, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26148529

RESUMO

Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.


Assuntos
Bactérias/metabolismo , Bactérias/ultraestrutura , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Bactérias/citologia , Bactérias/enzimologia , Compartimento Celular
13.
Nat Chem Biol ; 10(6): 431-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727900

RESUMO

Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1,000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is to our knowledge the first nonpatent report of the enzyme currently used for the manufacture of simvastatin as well as the intermediate evolved variants. Crystal structures and microsecond-scale molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations markedly altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular Direcionada , Lovastatina/biossíntese , Mutação , Conformação Proteica
14.
PLoS Comput Biol ; 11(2): e1004067, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25646976

RESUMO

Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a "universal hub" for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding ß-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP.


Assuntos
Bactérias/citologia , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Organelas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteínas de Bactérias/fisiologia , Biologia Computacional , Modelos Moleculares , Organelas/fisiologia
15.
J Bacteriol ; 197(14): 2392-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25962918

RESUMO

UNLABELLED: In Salmonella enterica, 1,2-propanediol (1,2-PD) utilization (Pdu) is mediated by a bacterial microcompartment (MCP). The Pdu MCP consists of a multiprotein shell that encapsulates enzymes and cofactors for 1,2-PD catabolism, and its role is to sequester a reactive intermediate (propionaldehyde) to minimize cellular toxicity and DNA damage. For the Pdu MCP to function, the enzymes encapsulated within must be provided with a steady supply of substrates and cofactors. In the present study, Western blotting assays were used to demonstrate that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that the N-terminal 20-residue-long peptide of PduL is necessary and sufficient for targeting PduL and enhanced green fluorescent protein (eGFP) to the lumen of the Pdu MCP. We present the results of genetic tests that indicate that PduL plays a role in the recycling of coenzyme A internally within the Pdu MCP. However, the results indicate that some coenzyme A recycling occurs externally to the Pdu MCP. Hence, our results support a model in which a steady supply of coenzyme A is provided to MCP lumen enzymes by internal recycling by PduL as well as by the movement of coenzyme A across the shell by an unknown mechanism. These studies expand our understanding of the Pdu MCP, which has been linked to enteric pathogenesis and which provides a possible basis for the development of intracellular bioreactors for use in biotechnology. IMPORTANCE: Bacterial MCPs are widespread organelles that play important roles in pathogenesis and global carbon fixation. Here we show that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that PduL plays a key role in cofactor homeostasis by recycling coenzyme A internally within the Pdu MCP. Further, we identify a potential N-terminal targeting sequence using a bioinformatic approach and show that this short sequence extension is necessary and sufficient for directing PduL as well as heterologous proteins to the lumen of the Pdu MCP. These findings expand our general understanding of bacterial MCP assembly and cofactor homeostasis.


Assuntos
Coenzima A/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fosfato Acetiltransferase/metabolismo , Propilenoglicol/metabolismo , Salmonella enterica/metabolismo , Sequência de Aminoácidos , Coenzima A/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Organelas/fisiologia , Fosfato Acetiltransferase/genética , Conformação Proteica , Salmonella enterica/genética
16.
J Biol Chem ; 289(11): 7973-81, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24459150

RESUMO

Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function.


Assuntos
Hidroliases/química , Ribulose-Bifosfato Carboxilase/química , Burkholderiaceae/enzimologia , Burkholderiaceae/genética , Domínio Catalítico , Cristalografia por Raios X , Teste de Complementação Genética , Modelos Moleculares , Chaperonas Moleculares/química , Óperon , Ligação Proteica , Estrutura Secundária de Proteína , Pterinas/química
17.
J Biol Chem ; 289(13): 8852-64, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24523405

RESUMO

Dihydromethanopterin reductase (Dmr) is a redox enzyme that plays a key role in generating tetrahydromethanopterin (H4MPT) for use in one-carbon metabolism by archaea and some bacteria. DmrB is a bacterial enzyme understood to reduce dihydromethanopterin (H2MPT) to H4MPT using flavins as the source of reducing equivalents, but the mechanistic details have not been elucidated previously. Here we report the crystal structure of DmrB from Burkholderia xenovorans at a resolution of 1.9 Å. Unexpectedly, the biological unit is a 24-mer composed of eight homotrimers located at the corners of a cubic cage-like structure. Within a homotrimer, each monomer-monomer interface exhibits an active site with two adjacently bound flavin mononucleotide (FMN) ligands, one deeply buried and tightly bound and one more peripheral, for a total of 48 ligands in the biological unit. Computational docking suggested that the peripheral site could bind either the observed FMN (the electron donor for the overall reaction) or the pterin, H2MPT (the electron acceptor for the overall reaction), in configurations ideal for electron transfer to and from the tightly bound FMN. On this basis, we propose that DmrB uses a ping-pong mechanism to transfer reducing equivalents from FMN to the pterin substrate. Sequence comparisons suggested that the catalytic mechanism is conserved among the bacterial homologs of DmrB and partially conserved in archaeal homologs, where an alternate electron donor is likely used. In addition to the mechanistic revelations, the structure of DmrB could help guide the development of anti-obesity drugs based on modification of the ecology of the human gut.


Assuntos
Burkholderia/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Pterinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Simulação de Acoplamento Molecular , Oxirredução , Pterinas/química , Homologia de Sequência
18.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 203-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419393

RESUMO

The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the ß-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.


Assuntos
Proteínas de Bactérias/química , Synechocystis/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Multimerização Proteica , Synechocystis/citologia , Synechocystis/genética
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1538-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914965

RESUMO

The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as `crowdsourcing'. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of `individuals', each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.


Assuntos
Cristalografia/métodos , Substâncias Macromoleculares/química , Algoritmos , Automação , Tomada de Decisões
20.
Angew Chem Int Ed Engl ; 53(20): 5194-8, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24692304

RESUMO

Our goal was to obtain the X-ray crystal structure of the glycosylated chemokine Ser-CCL1. Glycoproteins can be hard to crystallize because of the heterogeneity of the oligosaccharide (glycan) moiety. We used glycosylated Ser-CCL1 that had been prepared by total chemical synthesis as a homogeneous compound containing an N-linked asialo biantennary nonasaccharide glycan moiety of defined covalent structure. Facile crystal formation occurred from a quasi-racemic mixture consisting of glycosylated L-protein and non-glycosylated-D-protein, while no crystals were obtained from the glycosylated L-protein alone. The structure was solved at a resolution of 2.6-2.1 Å. However, the glycan moiety was disordered: only the N-linked GlcNAc sugar was well-defined in the electron density map. A racemic mixture of the protein enantiomers L-Ser-CCL1 and D-Ser-CCL1 was also crystallized, and the structure of the true racemate was solved at a resolution of 2.7-2.15 Å. Superimposition of the structures of the protein moieties of L-Ser-CCL1 and glycosylated-L-Ser-CCL1 revealed there was no significant alteration of the protein structure by N-glycosylation.


Assuntos
Quimiocina CCL1/química , Serina/química , Glicosilação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA