Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Infect Dis ; 76(4): 704-712, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767269

RESUMO

BACKGROUND: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS: Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS: Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Criança , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Plasmodium falciparum , Quênia/epidemiologia , Parasitemia/tratamento farmacológico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico
2.
Malar J ; 22(1): 161, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37208735

RESUMO

BACKGROUND: The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS: Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS: Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION: These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.


Assuntos
Antimaláricos , Cissampelos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Rizoma
3.
BMC Med ; 20(1): 448, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36397090

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS: Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS: The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS: Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.


Assuntos
Antimaláricos , Artemisininas , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Quênia/epidemiologia , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina , Artemeter , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Lumefantrina , Genômica
4.
Malar J ; 21(1): 251, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050680

RESUMO

BACKGROUND: The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya. METHODS: A total of 366 samples from an ongoing malaria surveillance study were diagnosed for malaria by microscopy and further typed for blood group using ABO blood grouping. Age and sex were recorded in a data sheet, and analysed using R software version 4. Groups' proportions (blood group, malaria infection, age and sex) were compared using Pearson's Chi-square and Fischer exact tests. Wilcoxon and Kruskal-Wallis tests were performed and P-value < 0.05 was considered significant after Bonferroni correction for multiple comparisons. To understand the effect of each blood group on parasitaemia, multivariate logistic regression was used to model ABO blood group in relation to parasitaemia. RESULTS: Of the 366 samples analysed, 312 were malaria positive, mean age was 9.83 years (< 5 years n = 152 (48.41%), 6 to 17 years n = 101 (32.16%) and > 18 years n = 61 (19.43%)). Malaria prevalence was higher among females than males, 54.46% and 45.54%, respectively. Kisumu enrolled the highest number 109 (35%)) of malaria cases, Kombewa 108 (35%), Malindi 32 (10%), Kisii 28 (9%), Marigat 23 (7%), and Kericho 12 (4%). Blood group O+ was the most prevalent among the enrolled individuals (46.50%), A+ (27.71%), B+ (21.02%) and AB+ (4.78%) respectively. Compared to blood group O+, blood group B+ individuals were (14%) were more likely to habour Plasmodium falciparum infection as opposed to A+ and AB+ individuals, that were 7% and 20%, respectively,. Those living in malaria-endemic zones presented with higher parasite densities compared to those living in malaria-epidemic (p = 0.0061). Individuals bearing B + blood group are more likely to habour high parasitaemia compared to O + blood group bearers (OR = 4.47, CI = 1.53-13.05, p = 0.006). CONCLUSION: Individuals of blood group B harbour high parasitaemia compared with the blood group O, Additionally, blood group A and B present with symptoms at lower parasitaemia than blood group O. Regardles of malaria transmission zones, individuals from endemic zones showed up with high parasitaemia and among them were more individuals of blood groups A and B than individuals of blood group O. Implying that these individuals were more at risk and require additional attention and effective case management.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Malária , Criança , Feminino , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/epidemiologia , Plasmodium falciparum
6.
Molecules ; 22(9)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891957

RESUMO

Four new flavones with modified prenyl groups, namely (E)-5-hydroxytephrostachin (1), purleptone (2), (E)-5-hydroxyanhydrotephrostachin (3), and terpurlepflavone (4), along with seven known compounds (5-11), were isolated from the CH2Cl2/MeOH (1:1) extract of the stem of Tephrosia purpurea subsp. leptostachya, a widely used medicinal plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric evidence. Some of the isolated compounds showed antiplasmodial activity against the chloroquine-sensitive D6 strains of Plasmodium falciparum, with (E)-5-hydroxytephrostachin (1) being the most active, IC50 1.7 ± 0.1 µM, with relatively low cytotoxicity, IC50 > 21 µM, against four cell-lines.


Assuntos
Antimaláricos/isolamento & purificação , Flavonas/isolamento & purificação , Caules de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Tephrosia/química , Células A549 , Antimaláricos/química , Antimaláricos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Flavonas/química , Flavonas/farmacologia , Células Hep G2 , Humanos , Especificidade de Órgãos , Extratos Vegetais/química , Plantas Medicinais , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade
7.
Antimicrob Agents Chemother ; 60(4): 2417-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26856829

RESUMO

The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia.P. falciparumlaboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z') analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.


Assuntos
Bioensaio/normas , Corantes Fluorescentes/química , Malária Falciparum/diagnóstico , Compostos Orgânicos/química , Parasitemia/diagnóstico , Plasmodium falciparum/isolamento & purificação , Antimaláricos/farmacologia , Artemisininas/farmacologia , Atovaquona/farmacologia , Benzotiazóis , Cloroquina/farmacologia , DNA de Protozoário/análise , Diaminas , Resistência a Medicamentos/genética , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mefloquina/farmacologia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Vigilância em Saúde Pública , Quinolinas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Antimicrob Agents Chemother ; 58(10): 5894-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070109

RESUMO

Doxycycline is widely used for malaria prophylaxis by international travelers. However, there is limited information on doxycycline efficacy in Kenya, and genetic polymorphisms associated with reduced efficacy are not well defined. In vitro doxycycline susceptibility profiles for 96 Plasmodium falciparum field isolates from Kenya were determined. Genetic polymorphisms were assessed in P. falciparum metabolite drug transporter (Pfmdt) and P. falciparum GTPase tetQ (PftetQ) genes. Copy number variation of the gene and the number of KYNNNN amino acid motif repeats within the protein encoded by PftetQ were determined. Reduced in vitro susceptibility to doxycycline was defined by 50% inhibitory concentrations (IC50s) of ≥35,000 nM. The odds ratio (OR) of having 2 PfTetQ KYNNNN amino acid repeats in isolates with IC50s of >35,000 nM relative to those with IC50s of <35,000 nM is 15 (95% confidence interval [CI], 3.0 to 74.3; P value of <0.0002). Isolates with 1 copy of the Pfmdt gene had a median IC50 of 6,971 nM, whereas those with a Pfmdt copy number of >1 had a median IC50 of 9,912 nM (P = 0.0245). Isolates with 1 copy of PftetQ had a median IC50 of 6,370 nM, whereas isolates with a PftetQ copy number of >1 had a median IC50 of 3,422 nM (P < 0.0007). Isolates with 2 PfTetQ KYNNNN motif repeats had a median IC50 of 26,165 nM, whereas isolates with 3 PfTetQ KYNNNN repeats had a median IC50 of 3,352 nM (P = 0.0023). PfTetQ sequence polymorphism is associated with a reduced doxycycline susceptibility phenotype in Kenyan isolates and is a potential marker for susceptibility testing.


Assuntos
Antimaláricos/farmacologia , Doxiciclina/farmacologia , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Variações do Número de Cópias de DNA , Concentração Inibidora 50 , Quênia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética
9.
Antimicrob Agents Chemother ; 58(7): 3737-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752268

RESUMO

In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genes de Protozoários/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinina/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Alelos , Animais , DNA de Protozoário/genética , Genes de Protozoários/fisiologia , Genótipo , Humanos , Quênia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/fisiologia , Repetições de Microssatélites , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Testes de Sensibilidade Parasitária , Polimorfismo Genético/genética , Proteínas de Protozoários/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia
10.
Malar J ; 13: 250, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24989984

RESUMO

BACKGROUND: Sulphadoxine-pyrimethamine (SP), an antifolate, was replaced by artemether-lumefantrine as the first-line malaria drug treatment in Kenya in 2004 due to the wide spread of resistance. However, SP still remains the recommended drug for intermittent preventive treatment in pregnant women and infants (IPTP/I) owing to its safety profile. This study assessed the prevalence of mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes associated with SP resistance in samples collected in Kenya between 2008 and 2012. METHODS: Field isolates collected from Kisumu, Kisii, Kericho and Malindi district hospitals were assessed for genetic polymorphism at various loci within Pfdhfr and Pfdhps genes by sequencing. RESULTS: Among the Pfdhfr mutations, codons N51I, C59R, S108N showed highest prevalence in all the field sites at 95.5%, 84.1% and 98.6% respectively. Pfdhfr S108N prevalence was highest in Kisii at 100%. A temporal trend analysis showed steady prevalence of mutations over time except for codon Pfdhps 581 which showed an increase in mixed genotypes. Triple Pfdhfr N51I/C59R/S108N and double Pfdhps A437G/ K540E had high prevalence rates of 86.6% and 87.9% respectively. The Pfdhfr/Pfdhps quintuple, N51I/C59R/S108N/A437G/K540E mutant which has been shown to be the most clinically relevant marker for SP resistance was observed in 75.7% of the samples. CONCLUSION: SP resistance is still persistently high in western Kenya, which is likely due to fixation of key mutations in the Pfdhfr and Pfdhps genes as well as drug pressure from other antifolate drugs being used for the treatment of malaria and other infections. In addition, there is emergence and increasing prevalence of new mutations in Kenyan parasite population. Since SP is used for IPTP/I, molecular surveillance and in vitro susceptibility assays must be sustained to provide information on the emergence and spread of SP resistance.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Tetra-Hidrofolato Desidrogenase/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Polimorfismo Genético , Gravidez , Análise de Sequência de DNA , Adulto Jovem
11.
Pan Afr Med J ; 47: 25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558553

RESUMO

Introduction: diarrheal infections in young children below five years and food animals are caused by diarrheagenic Escherichia coli strains. The study focused on understanding the association between DEC pathotypes in children below five years and food animals to establish the possibility of zoonotic transmission. Methods: samples from 150 children who presented with diarrhea at the Kisumu County Hospital and 100 stool samples from food animals were collected and processed using culture methods. Molecular identification of the pathotypes was assayed using a primer-specific polymerase chain reaction that targeted the six virulence genes related to the diarrheagenic Escherichia coli pathotypes. Results: one hundred and fifty-six study subjects (100 children samples and 56 food animals) samples were positive for E. coli polymerase chain reaction detection revealed a prevalence of (23%) among children below five years and a prevalence of (20%) among the food animals. Children samples showed Enteroaggregative Escherichia coli, having high phenotypic frequency of (12%) followed by Enterotoxigenic Escherichia coli, (5.3%) and Enteropathogenic Escherichia (3.3%) the least being mixed infections Enteroaggregative/Enterotoxigenic Escherichia coli and Enteroaggregative/Enteropathogenic Escherichia coli with (1.3%) respectively. The food animals found in children homesteads were detected to harbor pathogenic strains of E. coli. Enteropathogenic Escherichia coli was the most prevalent pathotypes detected in cattle (13%) followed by Enterotoxigenic Escherichia coli detected in goats at (4%) and poultry at (3%). Conclusion: presence of diarrheagenic Escherichia coli in food animals could serve as reservoirs of transmitting these bacteria to children below five years.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Criança , Humanos , Animais , Bovinos , Pré-Escolar , Prevalência , Quênia/epidemiologia , Infecções por Escherichia coli/diagnóstico , Escherichia coli Enteropatogênica/genética , Diarreia/epidemiologia , Diarreia/microbiologia
12.
PLoS One ; 19(6): e0298585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900782

RESUMO

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Quênia , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Masculino , Feminino
13.
Heliyon ; 9(8): e18863, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37583763

RESUMO

High malaria mortality coupled with increased emergence of resistant multi-drug resistant strains of Plasmodium parasite, warrants the development of new and effective antimalarial drugs. However, drug design and discovery are costly and time-consuming with many active antimalarial compounds failing to get approved due to safety reasons. To address these challenges, the current study aimed at testing the antiplasmodial activities of approved drugs that were predicted using a target-similarity approach. This approach is based on the fact that if an approved drug used to treat another disease targets a protein similar to Plasmodium falciparum protein, then the drug will have a comparable effect on P. falciparum. In a previous study, in vitro antiplasmodial activities of 10 approved drugs was reported of the total 28 approved drugs. In this study, six out of 18 drugs that were previously not tested, namely epirubicin, irinotecan, venlafaxine, palbociclib, pelitinib, and PD153035 were tested for antiplasmodial activity. The drug susceptibility in vitro assays against five P. falciparum reference strains (D6, 3D7, W2, DD2, and F32 ART) and ex vivo assays against fresh clinical isolates were done using the malaria SYBR Green I assay. Standard antimalarial drugs were included as controls. Epirubicin and irinotecan showed excellent antiplasmodial ex vivo activity against field isolates with mean IC50 values of 0.044 ± 0.033 µM and 0.085 ± 0.055 µM, respectively. Similar activity was observed against W2 strain where epirubicin had an IC50 value of 0.004 ± 0.0009 µM, palbociclib 0.056 ± 0.006 µM, and pelinitib 0.057 ± 0.013 µM. For the DD2 strain, epirubicin, irinotecan and PD 153035 displayed potent antiplasmodial activity (IC50 < 1 µM). Epirubicin and irinotecan showed potent antiplasmodial activities (IC50 < 1 µM) against DD2, D6, 3D7, and F32 ART strains and field isolates. This shows the potential use of these drugs as antimalarials. All the tested drugs showed antiplasmodial activities with IC50 values below 20 µM, which suggests that our target similarity-based strategy is successful at predicting antiplasmodial activity of compounds thereby circumventing challenges in antimalarial drug discovery.

14.
Front Med (Lausanne) ; 9: 991807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314027

RESUMO

The impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 Plasmodium antigens were significantly associated with ASMQ treatment outcome but not AL. We used machine learning to develop predictive models of treatment outcome based on the immunoprofile data. The models predict treatment outcome for ASMQ with high (72-85%) accuracy, but could not predict treatment outcome for AL. This divergent treatment outcome suggests that humoral immunity may synergize with the longer mefloquine half-life to provide a prophylactic effect at 28-42 days post-treatment, which was further supported by simulated pharmacokinetic profiling. Our computational approach and modeling revealed the synergistic effect of pre-existing immunity in patients with drug combination that has an extended efficacy on providing long term treatment efficacy of ASMQ.

15.
Lancet Microbe ; 2(4): e141-e150, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544189

RESUMO

BACKGROUND: The epidemiology and severity of non-falciparum malaria in endemic settings has garnered little attention. We aimed to characterise the prevalence, interaction, clinical risk factors, and temporal trends of non-falciparum Plasmodium species among symptomatic individuals presenting at health-care facilities in endemic settings of Kenya. METHODS: We diagnosed and analysed infecting malaria species (Plasmodium falciparum, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium malariae) via PCR in clinical samples collected between March 1, 2008, and Dec 31, 2016, from six hospitals located in different regions of Kenya. We recruited patients aged 6 months or older who presented at outpatient departments with symptoms of malaria or tested positive for uncomplicated malaria by malaria rapid diagnostic test. Descriptive statistics were used to describe the prevalence and distribution of Plasmodium species. A statistical model was designed and used for estimating the frequency of Plasmodium species and assessing interspecies interactions. Mixed-effect linear regression models with random slopes for each location were used to test for change in prevalence over time. FINDINGS: Samples from 2027 symptomatic participants presenting at care facilities were successfully analysed for all Plasmodium species. 1469 (72·5%) of the samples were P falciparum single-species infections, 523 (25·8%) were mixed infections, and only 35 (1·7%) were single non-falciparum species infections. 452 (22·3%) were mixed infections containing P ovale spp. A likelihood-based model calculation of the population frequency of each species estimated a significant within-host interference between P falciparum and P ovale curtisi. Mixed-effect logistic regression models identified a significant increase in P ovale wallikeri (2·1% per year; p=0·043) and P ovale curtisi (0·7% per year; p=0·0002) species over time, with a reciprocal decrease in P falciparum single-species infections (2·5% per year; p=0·0065). The frequency of P malariae infections did not significantly change over time. Risk of P falciparum infections presenting with fever was lower if co-infected with P malariae (adjusted odds ratio 0·43, 95% CI 0·25-0·74; p=0·0023). INTERPRETATION: Our results show a prevalence of non-falciparum species infections of 27·5% among symptomatic individuals presenting at care facilities, which is higher than expected from previous cross-sectional surveys. The proportion of infections with P ovale wallikeri and P ovale curtisi was observed to significantly increase over the period of study, which could be due to attenuated responsiveness of these species to malaria drug treatment. The increase in frequency of P ovale spp could threaten the malaria control efforts in Kenya and pose increased risk of malaria to travellers. FUNDING: Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance Section.


Assuntos
Coinfecção , Malária Falciparum , Malária , Plasmodium ovale , Estudos Transversais , Humanos , Funções Verossimilhança , Malária/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Plasmodium malariae , Prevalência
16.
PeerJ ; 8: e8082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201636

RESUMO

Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.

17.
PLoS One ; 11(1): e0143565, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751382

RESUMO

The Plasmodium falciparum in vitro culture system is critical for genotypic and phenotypic analyses of the parasites. For genotypic analysis, the genomic DNA can be obtained directly from the patient blood sample or from culture adapted parasites whereas for phenotypic analysis, immediate ex vivo or in vitro culture adapted parasites are used. However, parasite biology studies have not investigated whether culture adaptation process affects genotypic and/or phenotypic characteristics of the parasites in short- or long-term cultures. Here, we set out to study the dynamics and stability of parasite genetic and phenotypic profiles as field isolate parasites were adapted in continuous cultures. Parasites collected from three different patients presenting with uncomplicated malaria were adapted and maintained in drug-free continuous cultures. Aliquots from the continuous cultures were collected every 24-48 hours for analyses. Each aliquot was treated as a separate parasite sample. For genetic analysis, microsatellite (MS) typing and single nucleotide polymorphism (SNP) analyses of 23 drug resistance markers were done. The 50% inhibitory concentrations (IC50) for some of the samples were also established for four antimalarial drugs. Samples from each patient (parasite-line) were compared as they were passed through the continuous culture. Data revealed genotypic and phenotypic profiles for the three parasite-lines fluctuated from one generation to the next with no specific pattern or periodicity. With few exceptions, multilocus analysis revealed samples from each parasite-line had high genetic diversity with unique haplotypes. Interestingly, changes in MS and SNP profiles occurred simultaneously. The difference in the IC50s of samples in each parasite-line reached statistical significance. However, phenotypic changes did not correspond or correlate to genotypic changes. Our study revealed parasite genetic and phenotypic characteristics fluctuates in short- and long-term cultures, which indicates parasite genetic information obtained even in short cultures is likely to be different from the natural infection parasites.


Assuntos
DNA de Protozoário/genética , Genoma de Protozoário , Instabilidade Genômica , Genótipo , Fenótipo , Plasmodium falciparum/genética , Alelos , Antimaláricos/farmacologia , Resistência a Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Frequência do Gene , Humanos , Concentração Inibidora 50 , Quênia , Repetições de Microssatélites , Tipagem de Sequências Multilocus , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células
18.
Int J Parasitol Drugs Drug Resist ; 5(3): 92-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26236581

RESUMO

Artemether-lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995-2003) and 745 after (post-ACT; 2008-2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995-1996 to 93.2% in 2014 and 0.0% in 2002-2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use of AL in western Kenya.


Assuntos
Artemisininas/farmacologia , Artemisininas/uso terapêutico , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Fluorenos/farmacologia , Fluorenos/uso terapêutico , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Combinação Arteméter e Lumefantrina , Biomarcadores , Combinação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Haplótipos , Humanos , Quênia/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Seleção Genética , Fatores de Tempo
19.
Sci Rep ; 5: 8308, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655315

RESUMO

Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Dosagem de Genes , Loci Gênicos , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Frequência do Gene , Humanos , Concentração Inibidora 50 , Quênia , Malária Falciparum/tratamento farmacológico , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
20.
J Multidiscip Healthc ; 7: 515-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25395861

RESUMO

BACKGROUND: The renewed malaria eradication efforts require an understanding of the seasonal patterns of frequency of polymorphic variants in order to focus limited funds productively. Although cross-sectional studies in holoendemic areas spanning a single year could be useful in describing parasite genotype status at a given point, such information is inadequate in describing temporal trends in genotype polymorphisms. For Plasmodium falciparum isolates from Kisumu District Hospital, Plasmodium falciparum chloroquine-resistance transporter gene (Pfcrt-K76T) and P. falciparum multidrug resistance gene 1 (PfMDR1-N86Y), were analyzed for polymorphisms and parasitemia changes in the 53 months from March 2008 to August 2012. Observations were compared with prevailing climatic factors, including humidity, rainfall, and temperature. METHODS: Parasitemia (the percentage of infected red blood cells per total red blood cells) was established by microscopy for P. falciparum malaria-positive samples. P. falciparum DNA was extracted from whole blood using a Qiagen DNA Blood Mini Kit. Single nucleotide polymorphism identification at positions Pfcrt-K76T and PfMDR1-N86Y was performed using real-time polymerase chain reaction and/or sequencing. Data on climatic variables were obtained from http://www.tutiempo.net/en/. RESULTS: A total of 895 field isolates from 2008 (n=169), 2009 (n=161), 2010 (n=216), 2011 (n=223), and 2012 (n=126) showed large variations in monthly frequency of PfMDR1-N86Y and Pfcrt-K76T as the mutant genotypes decreased from 68.4%±15% and 38.1%±13% to 29.8%±18% and 13.3%±9%, respectively. The mean percentage of parasitemia was 2.61%±1.01% (coefficient of variation 115.86%; n=895). There was no correlation between genotype or parasitemia and climatic factors. CONCLUSION: This study shows variability in the frequency of Pfcrt-K76T and PfMDR1-N86Y polymorphisms during the study period, bringing into focus the role of cross-sectional studies in describing temporal genotype trends. The lack of correlation between genotypes and climatic changes, especially precipitation, emphasizes the cost of investment in genotype change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA