Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 50(17): 10015-10025, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107775

RESUMO

tRNAHis guanylyltransferase (Thg1) catalyzes the 3'-5' incorporation of guanosine into position -1 (G-1) of tRNAHis. G-1 is unique to tRNAHis and is crucial for recognition by histidyl-tRNA synthetase (HisRS). Yeast Thg1 requires ATP for G-1 addition to tRNAHis opposite A73, whereas archaeal Thg1 requires either ATP or GTP for G-1 addition to tRNAHis opposite C73. Paradoxically, human Thg1 (HsThg1) can add G-1 to tRNAsHis with A73 (cytoplasmic) and C73 (mitochondrial). As N73 is immediately followed by a CCA end (positions 74-76), how HsThg1 prevents successive 3'-5' incorporation of G-1/G-2/G-3 into mitochondrial tRNAHis (tRNAmHis) through a template-dependent mechanism remains a puzzle. We showed herein that mature native human tRNAmHis indeed contains only G-1. ATP was absolutely required for G-1 addition to tRNAmHis by HsThg1. Although HsThg1 could incorporate more than one GTP into tRNAmHisin vitro, a single-GTP incorporation prevailed when the relative GTP level was low. Surprisingly, HsThg1 possessed a tRNA-inducible GTPase activity, which could be inhibited by ATP. Similar activity was found in other high-eukaryotic dual-functional Thg1 enzymes, but not in yeast Thg1. This study suggests that HsThg1 may downregulate the level of GTP through its GTPase activity to prevent multiple-GTP incorporation into tRNAmHis.


Assuntos
Nucleotidiltransferases/metabolismo , RNA de Transferência de Histidina , Trifosfato de Adenosina , GTP Fosfo-Hidrolases/genética , Guanosina , Guanosina Trifosfato/metabolismo , Histidina-tRNA Ligase , Humanos , RNA de Transferência , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Biochim Biophys Acta ; 1829(8): 764-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23454554

RESUMO

In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Humanos , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
3.
Nat Commun ; 12(1): 3082, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035302

RESUMO

Splicing, a key step in the eukaryotic gene-expression pathway, converts precursor messenger RNA (pre-mRNA) into mRNA by excising introns and ligating exons. This task is accomplished by the spliceosome, a macromolecular machine that must undergo sequential conformational changes to establish its active site. Each of these major changes requires a dedicated DExD/H-box ATPase, but how these enzymes are activated remain obscure. Here we show that Prp28, a yeast DEAD-box ATPase, transiently interacts with the conserved 5' splice-site (5'SS) GU dinucleotide and makes splicing-dependent contacts with the U1 snRNP protein U1C, and U4/U6.U5 tri-snRNP proteins, Prp8, Brr2, and Snu114. We further show that Prp28's ATPase activity is potentiated by the phosphorylated Npl3, but not the unphosphorylated Npl3, thus suggesting a strategy for regulating DExD/H-box ATPases. We propose that Npl3 is a functional counterpart of the metazoan-specific Prp28 N-terminal region, which can be phosphorylated and serves as an anchor to human spliceosome.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease H/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
4.
Biochimie ; 88(12): 1983-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16938384

RESUMO

The transcriptional activation of heat shock protein (HSP) genes is initiated by the binding of heat shock factors (HSFs) to heat shock elements (HSEs) located at the promotor regions. Multiple HSFs exist in larger eukaryotic organisms in order to sense various types of stress signals. Here we report the cloning of zebrafish (Danio rerio) HSF2 (zHSF2) cDNA (GenBank accession number AF412833 ) that has an open reading frame of 1470 nucleotides, encoding a polypeptide of 489 amino acids. Domain architecture analysis of the deduced zHSF2 sequence revealed the presence of a DNA-binding domain at the N-terminal end, an adjacent oligomerization domain and a vertebrate heat shock transcription factor domain. Amino acid alignment showed a 70% sequence identity between zHSF2 and human or mouse HSF2, while only a 45% identity was found between zHSF1a and zHSF2. Recombinant zHSF2 bound with a very high specificity to HSEs arranged as inverted arrays of 5'-nGAAn-3', as replacing one GAA with GTA almost abolished the formation of HSE-binding complex. Similar patterns of zHSF1a and zHSF2 mRNA expression in the brain regions of developing zebrafish were detected by whole mount in situ hybridization and paraffin sectioning, suggesting that most of the two HSF gene activities were controlled by a common mechanism during the embryonic development of zebrafish. The levels of both zHSF1a and zHSF2 mRNA in zebrafish tissues were moderately increased after heat stress.


Assuntos
Encéfalo/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hibridização In Situ , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
5.
Methods Mol Biol ; 1421: 175-89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965266

RESUMO

Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA-protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein-protein crosslinkings. This enabled us, for the first time, to "capture" Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein-protein contacts within an RNA-protein complex.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fenilalanina/metabolismo , Mapeamento de Interação de Proteínas/métodos , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Fenilalanina/análogos & derivados , Processos Fotoquímicos , Mapas de Interação de Proteínas , Splicing de RNA
6.
Biochim Biophys Acta ; 1680(2): 129-36, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15488992

RESUMO

Eukaryotic mismatch repair of simple base mispairs and small insertion-deletion loops is activated by the binding of a heterodimeric complex composed of MutS homolog 2(MSH2) and MSH6. Here we report the cloning of zebrafish (Danio rerio) MSH2 (zMSH2) cDNA that has an open reading frame of 2811 nucleotides encoding a polypeptide of 936 amino acids. The deduced amino acid sequence of zMSH2 shares a 69% identity to both human and mouse MSH2. The zMSH2 protein contains a putative tyrosine-42 mismatch-contacting residue located at the N-terminal mismatch recognition region and four C-terminal ATP-binding consensus sequences conserved among MutS homologs. The 105-kDa recombinant zMSH2 bound apparently stronger to a G-T heteroduplex than to a homoduplex probe as shown by a gel shift assay. A preferential expression of both zMSH2 and zMSH6 mRNA in early embryos was found by Northern blot analysis. Whole mount in situ hybridization revealed a major expression of zMSH2 in different regions of the brain, including eyes, telencephalon, and the fourth ventricle in 12- to 48-h-old embryos. The production of zMSH2 mRNA gradually decreased in more mature 60- to 120-h-old zebrafish, reflecting a positive correlation between the amount of proliferating cells and MSH gene expression.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Northern Blotting , Clonagem Molecular , Sequência Consenso , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Hibridização In Situ , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS , Fases de Leitura Aberta , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
7.
Mol Immunol ; 46(6): 1179-88, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118901

RESUMO

Previously, we found that peptidoglycan (PGN), a cell wall component of the gram-positive bacterium Staphylococcus aureus, may activate the Ras/Raf-1/extracellular signal-regulated kinase (ERK) pathway, which in turn initiates IkappaB kinases alpha/beta (IKKalpha/beta) and nuclear factor-kappaB (NF-kappaB) activation, and ultimately induces cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. In this study, we further investigated the roles of Rac1, phosphatidylinositol 3-kinase (PI3K), and Akt in PGN-induced NF-kappaB activation and COX-2 expression in RAW 264.7 macrophages. PGN-induced COX-2 expression was attenuated by a Rac1 dominant negative mutant (RacN17), PI3K inhibitors (wortmannin and LY 294002), and an Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol2-[(R)-2-O-methyl-3-O-octadecylcarbonate]). PGN-induced PGE(2) release was also inhibited by RacN17. Treatment of RAW 264.7 macrophages with PGN caused the activation of Rac and Akt. PGN-induced Akt activation was inhibited by RacN17, LY 294002, and the Akt inhibitor. Stimulation of RAW 264.7 macrophages with PGN resulted in an increase in IKKalpha/beta phosphorylation and p65 Ser536 phosphorylation; these effects were inhibited by RacN17, LY 294002, an Akt inhibitor, and an Akt dominant negative mutant (AktDN). The PGN-induced increases in kappaB-luciferase activity were also inhibited by RacN17, wortmannin, LY 294002, an Akt inhibitor, and AktDN. Treatment of macrophages with PGN induced the recruitment of p85alpha and Rac1 to Toll-like receptor 2 (TLR2) in a time-dependent manner. These results indicate that PGN may activate the Rac1/PI3K/Akt pathway through the recruitment of p85alpha and Rac1 to TLR2 to mediate IKKalpha/beta activation and p65 phosphorylation, which in turn induces NF-kappaB transactivation, and ultimately causes COX-2 expression in RAW 264.7 macrophages.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Macrófagos/metabolismo , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Androstadienos/farmacologia , Animais , Linhagem Celular , Cromonas/farmacologia , Dinoprostona/biossíntese , Humanos , Quinase I-kappa B/metabolismo , Inositol/análogos & derivados , Inositol/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Mutação , NF-kappa B/antagonistas & inibidores , Peptidoglicano/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptor 2 Toll-Like/metabolismo , Wortmanina , Proteínas rac1 de Ligação ao GTP/genética
8.
Mol Cell Biol ; 27(23): 8027-37, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17893323

RESUMO

The Saccharomyces cerevisiae splicing factors Ntr1 (also known as Spp382) and Ntr2 form a stable complex and can further associate with DExD/H-box RNA helicase Prp43 to form a functional complex, termed the NTR complex, which catalyzes spliceosome disassembly. We show that Prp43 interacts with Ntr1-Ntr2 in a dynamic manner. The Ntr1-Ntr2 complex can also bind to the spliceosome first, before recruiting Prp43 to catalyze disassembly. Binding of Ntr1-Ntr2 or Prp43 does not require ATP, but disassembly of the spliceosome requires hydrolysis of ATP. The NTR complex also dynamically interacts with U5 snRNP. Ntr2 interacts with U5 component Brr2 and is essential for both interactions of NTR with U5 and with the spliceosome. Ntr2 alone can also bind to U5 and to the spliceosome, suggesting a role of Ntr2 in mediating the binding of NTR to the spliceosome through its interaction with U5. Our results demonstrate that dynamic interactions of NTR with U5, through the interaction of Ntr2 with Brr2, and interactions of Ntr1 and Prp43 govern the recruitment of Prp43 to the spliceosome to mediate spliceosome disassembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/farmacologia , Anticorpos Antifúngicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos
9.
Genes Dev ; 19(24): 2991-3003, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357217

RESUMO

Two novel yeast splicing factors required for spliceosome disassembly have been identified. Ntr1 and Ntr2 (NineTeen complex-Related proteins) were identified for their weak association with components of the Prp19-associated complex. Unlike other Prp19-associated components, these two proteins were primarily associated with the intron-containing spliceosome during the splicing reaction. Extracts depleted of Ntr1 or Ntr2 exhibited full splicing activity, but accumulated large amounts of lariat-intron in the spliceosome after splicing, indicating that the normal function of the Prp19-associated complex in spliceosome activation was not affected, but spliceosome disassembly was hindered. Immunoprecipitation analysis revealed that Ntr1 and Ntr2 formed a stable complex with DExD/H-box RNA helicase Prp43 in the splicing extract. Ntr1 interacted with Prp43 through the N-terminal G-patch domain, with Ntr2 through a middle region, and with itself through the carboxyl half of the protein. The affinity-purified Ntr1-Ntr2-Prp43 complex could catalyze disassembly of the spliceosome in an ATP-dependent manner, separating U2, U5, U6, NTC (NineTeen Complex), and lariat-intron. This is the first demonstration of physical disassembly of the spliceosome, catalyzed by a complex containing a DExD/H-box RNA helicase and two accessory factors, which might function in targeting the helicase to the correct substrate.


Assuntos
RNA Helicases/metabolismo , Splicing de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , RNA Helicases DEAD-box , RNA Helicases/química , RNA Helicases/isolamento & purificação , Fatores de Processamento de RNA , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Spliceossomos/química
10.
J Exp Zool ; 293(4): 349-59, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12210118

RESUMO

A spontaneous high expression of heat shock protein 70 (HSP 70) was found to arise in zebrafish (Danio rerio) at the larval stage (84 hr after fertilization). The level of HSP 70 in 84-hr-old larvae was estimated to be six- to eightfold that of 12-hr-old embryos. As heat-induced HSP 70 synthesis in many eukaryotic organisms is known to be mediated by a transcriptional-dependent pathway activated by heat shock factor 1 (HSF-1), we then examined if the spontaneous and heat-induced HSP 70 synthesis in zebrafish were controlled by the same mechanism. Although the transient increase of a 62-kDa HSF-1-like polypeptide in 72- to 96-hr-old larvae seemed to correlate with the onset of the spontaneous HSP 70 production, an anti-HSF-1 antibody cocktail supershifted the heat shock element (HSE) binding complex induced by stressed but not by unstressed zebrafish extracts. Northern blot and quantitative RT-PCR analysis demonstrated the predominant presence of the cognate form of hsp 70 mRNA (hsc 70 mRNA) in developing zebrafish. The extent of heat-induced HSP 70 production in 84-hr-old larvae matched well with a dramatic increase in hsp 70 mRNA accumulation, while no apparent increase in total hsp 70 mRNA could be detected in 72- to 84-hr-old unstressed larvae by northern blot analysis. The stable expression of hsc 70 mRNA specific to beta-actin mRNA in normal zebrafish was confirmed by RT-PCR analysis. Hence, the spontaneous high expression of HSP 70 in zebrafish is believed to be controlled by a mechanism different from the HSF-1-dependent transcriptional activation of hsp 70 under heat stress. J. Exp. Zool. 293:349-359, 2002.


Assuntos
Proteínas de Choque Térmico HSP70 , Peixe-Zebra , Animais , Proteínas de Ligação a DNA/biossíntese , Inibidores Enzimáticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/biossíntese , Temperatura Alta , Fatores de Transcrição/genética , Peixe-Zebra/genética
11.
J Exp Zool A Comp Exp Biol ; 297(2): 118-29, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12945748

RESUMO

Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when beta-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.


Assuntos
Pareamento Incorreto de Bases , Clonagem Molecular , Reparo do DNA , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , DNA Complementar , Regulação para Baixo , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA