Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Synapse ; : e22075, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30334291

RESUMO

Brain-derived neurotrophic factor (BDNF), traditionally known for promoting neuronal growth and development, is also a modulator of synaptic transmission. In addition to the well-characterized effects at excitatory synapses, BDNF has been shown to acutely suppress inhibitory neurotransmission; however, the underlying mechanisms are unclear. We have previously shown that at inhibitory synapses in layer 2/3 of the somatosensory cortex, BDNF induces the mobilization of endogenous cannabinoids (eCBs) that act retrogradely to suppress GABA release. Here, we hypothesized that in the hippocampus, BDNF acts similarly via eCB signaling to suppress GABAergic transmission. We found that the acute application of BDNF reduced the spontaneous inhibitory postsynaptic currents (sIPSCs) via postsynaptic TrkB receptor activation. The suppressive effects of BDNF required eCB signaling, as this effect on sIPSCs was prevented by a CB1 receptor antagonist. Further, blocking the postsynaptic eCB release prevented the effect of BDNF, whereas eCB reuptake inhibition enhanced the effect of BDNF. These results suggest that BDNF triggers the postsynaptic release of eCBs. To identify the specific eCB release by BDNF, we tested the effects of disrupting the synthesis or degradation of 2-arachidonoylcglycerol (2-AG). Blocking 2-AG synthesis prevented the effect of BDNF and blocking 2-AG degradation enhanced the effect of BDNF. However, there was no change in the effect of BDNF when anandamide degradation was blocked. Collectively, these results suggest that in the hippocampus, BDNF-TrkB signaling induces the postsynaptic release of the endogenous cannabinoid 2-AG, which acts retrogradely on the presynaptic CB1 receptors to suppress GABA release.

2.
Synapse ; 71(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28164368

RESUMO

Endocannabinoids (eCBs) and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), are potent neuromodulators found throughout the mammalian neocortex. Both eCBs and BDNF play critical roles in many behavioral and neurophysiological processes and are targets for the development of novel therapeutics. The effects of eCBs and BDNF are primarily mediated by the type 1 cannabinoid (CB1) receptor and the trkB tyrosine kinase receptor, respectively. Our laboratory and others have previously established that BDNF potentiates excitatory transmission by enhancing presynaptic glutamate release and modulating NMDA receptors. In contrast, we have shown that BDNF attenuates inhibitory transmission by inducing postsynaptic release of eCBs that act retrogradely to suppress GABA release in layer 2/3 of somatosensory cortex. Here, we hypothesized that BDNF also induces release of eCBs at excitatory synapses, which could have a mitigating or opposing effect on the direct presynaptic effects of BDNF. We found the highest levels of expression of CB1 and trkB and receptors in layers 2/3 and 5. Surprisingly, BDNF did not increase the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) onto layer 5 pyramidal neurons in somatosensory cortex, in contrast to its effects in the hippocampus and visual cortex. However, the effect of BDNF on mEPSC frequency in somatosensory cortex was unmasked by blocking CB1 receptors or disrupting eCB release. Thus, BDNF-trKB signaling regulates glutamate release in the somatosensory cortex via opposing effects, a direct presynaptic enhancement of release probability, and simultaneous postsynaptically-induced eCB release that decreases release probability via presynaptic CB1 receptors.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Endocanabinoides/metabolismo , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos em Miniatura , Neocórtex/metabolismo , Células Piramidais/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/fisiologia , Células Piramidais/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
3.
J Neurosci ; 34(16): 5717-31, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24741061

RESUMO

The elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons. However, few studies have investigated their function(s) in the development of pyramidal cells. Here, we observed expression of Robo1 and Slit genes (Slit1, Slit2) in cells lining the telencephalic ventricles, and found significant increases in progenitor cells (basal and apical) at embryonic day (E)12.5 and E14.5 in the developing cortex of Robo1(-/-), Slit1(-/-), and Slit1(-/-)/Slit2(-/-), but not in mice lacking the other Robo or Slit genes. Using layer-specific markers, we found that both early- and late-born pyramidal neuron populations were significantly increased in the cortices of Robo1(-/-) mice at the end of corticogenesis (E18.5). The excess number of cortical pyramidal neurons generated prenatally appears to die in early postnatal life. The observed increase in pyramidal neurons was due to prolonged proliferative activity of their progenitors and not due to changes in cell cycle events. This finding, confirmed by in utero electroporation with Robo1 short hairpin RNA (shRNA) or control constructs into progenitors along the ventricular zone as well as in dissociated cortical cell cultures, points to a novel role for Robo1 in regulating the proliferation and generation of pyramidal neurons.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento/genética , Neocórtex , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Receptores Imunológicos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Proteínas Roundabout
4.
Circ Res ; 112(3): 465-75, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255421

RESUMO

RATIONALE: The Slit-Roundabout (Robo) signaling pathway has pleiotropic functions during Drosophila heart development. However, its role in mammalian heart development is largely unknown. OBJECTIVE: To analyze the role of Slit-Robo signaling in the formation of the pericardium and the systemic venous return in the murine heart. METHODS AND RESULTS: Expression of genes encoding Robo1 and Robo2 receptors and their ligands Slit2 and Slit3 was found in or around the systemic venous return and pericardium during development. Analysis of embryos lacking Robo1 revealed partial absence of the pericardium, whereas Robo1/2 double mutants additionally showed severely reduced sinus horn myocardium, hypoplastic caval veins, and a persistent left inferior caval vein. Mice lacking Slit3 recapitulated the defects in the myocardialization, alignment, and morphology of the caval veins. Ligand binding assays confirmed Slit3 as the preferred ligand for the Robo1 receptor, whereas Slit2 showed preference for Robo2. Sinus node development was mostly unaffected in all mutants. In addition, we show absence of cross-regulation with previously identified regulators Tbx18 and Wt1. We provide evidence that pericardial defects are created by abnormal localization of the caval veins combined with ectopic pericardial cavity formation. Local increase in neural crest cell death and impaired neural crest adhesive and migratory properties underlie the ectopic pericardium formation. CONCLUSIONS: A novel Slit-Robo signaling pathway is involved in the development of the pericardium, the sinus horn myocardium, and the alignment of the caval veins. Reduced Slit3 binding in the absence of Robo1, causing impaired cardiac neural crest survival, adhesion, and migration, underlies the pericardial defects.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pericárdio/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Veias Cavas/metabolismo , Animais , Apoptose , Adesão Celular , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Crista Neural/anormalidades , Crista Neural/metabolismo , Pericárdio/anormalidades , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Nó Sinoatrial/anormalidades , Nó Sinoatrial/metabolismo , Proteínas com Domínio T/metabolismo , Técnicas de Cultura de Tecidos , Veias Cavas/anormalidades , Proteínas WT1/metabolismo , Proteínas Roundabout
5.
J Neurosci ; 32(22): 7701-10, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649248

RESUMO

Neurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. The prevailing view is that, depending on the target and mode of action, most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered. Here we provide the neuroanatomical substrate for an anterograde hippocamposeptal transport of NGF by demonstrating its presence in mouse hippocampal GABAergic neurons and in their hippocamposeptal axons that ramify densely and abut neurons in the medial septum/diagonal band of Broca (MS/DB). We also demonstrate an activity-dependent increase in septal NGF levels that is dependent on the pattern of intrahippocampal stimulation. In addition, we show that acute exposure to NGF, via activation of TrkA, attenuates GABA(A) receptor-mediated inhibitory synaptic currents and reduces sensitivity to exogenously applied GABA. These acute actions of NGF display cell type and functional selectivity insofar as (1) they were found in cholinergic, but not GABAergic, MS/DB neurons, and (2) glutamate-mediated excitatory synaptic activity as well as AMPA-activated current responses were unaffected. Our results advocate a novel anterograde, TrkA-mediated NGF signaling in the CNS.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Fator de Crescimento Neural/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Colina O-Acetiltransferase/genética , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , GABAérgicos/farmacologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/efeitos dos fármacos , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/farmacologia , Inibição Neural/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Núcleos Septais/citologia , Septo do Cérebro/citologia
6.
Dev Biol ; 365(1): 277-89, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22421355

RESUMO

Cajal-Retzius (CR) cells play a crucial role in the formation of the cerebral cortex, yet the molecules that control their development are largely unknown. Here, we show that Ebf transcription factors are expressed in forebrain signalling centres-the septum, cortical hem and the pallial-subpallial boundary-known to generate CR cells. We identified Ebf2, through fate mapping studies, as a novel marker for cortical hem- and septum-derived CR cells. Loss of Ebf2 in vivo causes a transient decrease in CR cell numbers on the cortical surface due to a migratory defect in the cortical hem, and is accompanied by upregulation of Ebf3 in this and other forebrain territories that produce CR cells, without affecting proper cortical lamination. Accordingly, using in vitro preparations, we demonstrated that both Ebf2 and Ebf3, singly or together, control the migration of CR cells arising in the cortical hem. These findings provide evidence that Ebfs directly regulate CR cell development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem da Célula , Córtex Cerebral/embriologia , Neurônios , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia
7.
Acta Neurochir Suppl ; 111: 141-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21725745

RESUMO

INTRODUCTION: Exposure to isoflurane gas prior to neurological injury, known as anesthetic preconditioning, has been shown to provide neuroprotective benefits in animal models of ischemic stroke. Given the common mediators of cellular injury in ischemic and hemorrhagic stroke, we hypothesize that isoflurane preconditioning will provide neurological protection in intracerebral hemorrhage (ICH). METHODS: 24 h prior to intracerebral hemorrhage, C57BL/6J mice were preconditioned with a 4-h exposure to 1% isoflurane gas or room air. Intracerebral hemorrhage was performed using a double infusion of 30-µL autologous whole blood. Neurological function was evaluated at 24, 48 and 72 h using the 28-point test. Mice were sacrificed at 72 h, and brain edema was measured. RESULTS: Mice preconditioned with isoflurane performed better than control mice on 28-point testing at 24 h, but not at 48 or 72 h. There was no significant difference in ipsilateral hemispheric edema between mice preconditioned with isoflurane and control mice. CONCLUSION: These results demonstrate the early functional neuroprotective effects of anesthetic preconditioning in ICH and suggest that methods of preconditioning that afford protection in ischemia may also provide protection in ICH.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Hemorragia Cerebral/prevenção & controle , Isoflurano/administração & dosagem , Albuminas/metabolismo , Animais , Encéfalo/metabolismo , Edema Encefálico/etiologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Esquema de Medicação , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Fatores de Tempo
8.
OBM Neurobiol ; 1(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-30854511

RESUMO

Autism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis. At present, there is an ever-growing list of mutations in putative susceptibility genes in affected individuals, preventing effective transformation of knowledge gathered from basic science research to the clinic. In response, the focus of ASD biology has shifted toward the identification of cellular signaling pathways that are common to various ASD-related mutations in hopes that these shared pathways may serve as more promising treatment targets than targeting individual genes or proteins. To this end, the endogenous cannabinoid (endocannabinoid, eCB) system has recently emerged as a promising therapeutic target in the field of ASD research. The eCB system is altered in several neurological disorders, but the role of these bioactive lipids in ASD etiology remains poorly understood. In this perspective, we review current evidence linking eCB signaling to ASDs and put forth the notion that continued focus on eCBs in autism research may provide valuable insight into pathophysiology and treatment strategies. In addition to its role in modulating transmitter release at mature synapses, the eCB signaling system plays important roles in many aspects of cortical development, and disruption of these effects of eCBs may also be related to ASD pathophysiology.

9.
Cardiovasc Res ; 106(1): 55-66, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25691540

RESUMO

AIMS: The mesenchymal cushions lining the early embryonic heart undergo complex remodelling to form the membranous ventricular septum as well as the atrioventricular and semilunar valves in later life. Disruption of this process underlies the most common congenital heart defects. Here, we identified a novel role for Slit-Robo signalling in the development of the murine membranous ventricular septum and cardiac valves. METHODS AND RESULTS: Expression of Robo1 and Robo2 receptors and their ligands, Slit2 and Slit3, was present in or adjacent to all cardiac cushions/valves. Loss of Robo1 or both Robo1 and Robo2 resulted in membranous ventricular septum defects at birth, a defect also found in Slit3, but not in Slit2 mutants. Additionally, Robo1;Robo2 double mutants showed thickened immature semilunar and atrioventricular valves as well as highly penetrant bicuspid aortic valves. Slit2 mutants recapitulated the semilunar phenotype, whereas Slit3 mutants displayed thickened atrioventricular valves. Bicuspid aortic cushions were already observed at E12.5 in the Robo1;Robo2 double mutants. Expression of Notch- and downstream Hey and Hes genes was down-regulated in Robo1 mutants, suggesting that reduced Notch signalling in mice lacking Robo might underlie the defects. Luciferase assays confirmed regulation of Notch signalling by Robo. CONCLUSION: Cardiac defects in mutants for Robo or Slit range from membranous ventricular septum defects to bicuspid aortic valves. These ligands and receptors have unique functions during development of specific cardiac cushion derivatives, and the Slit-Robo signalling pathway likely enforces its role by regulating Notch signalling, making these mutants a valuable new model to study cardiac valve formation.


Assuntos
Valva Aórtica/anormalidades , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Transdução de Sinais/genética , Animais , Valva Aórtica/fisiopatologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Doença da Válvula Aórtica Bicúspide , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cardiopatias Congênitas/fisiopatologia , Doenças das Valvas Cardíacas/fisiopatologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Receptores Notch/genética , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1 , Septo Interventricular/patologia , Proteínas Roundabout
10.
PLoS One ; 7(6): e38664, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761695

RESUMO

BACKGROUND AND PURPOSE: The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points. METHODS: To evaluate the effect of C3a-receptor antagonism on post-ischemic neurogenesis and neurological outcome in the subacute period of stroke, transient focal cerebral ischemia was induced in adult male C57BL/6 mice treated with multiple regimens of a C3a receptor antagonist (C3aRA). RESULTS: Low-dose C3aRA administration during the acute phase of stroke promotes neuroblast proliferation in the subventricular zone at 7 days. Additionally, the C3a receptor is expressed on T-lymphocytes within the ischemic territory at 7 days, and this cellular infiltrate is abrogated by C3aRA administration. Finally, C3aRA treatment confers robust histologic and functional neuroprotection at this delayed time-point. CONCLUSIONS: Targeted complement inhibition through low-dose antagonism of the C3a receptor promotes post-ischemic neuroblast proliferation in the SVZ. Furthermore, C3aRA administration suppresses T-lymphocyte infiltration and improves delayed functional and histologic outcome following reperfused stroke. Post-ischemic complement activation may be pharmacologically manipulated to yield an effective therapy for stroke.


Assuntos
Anti-Inflamatórios/farmacologia , Complemento C3a/antagonistas & inibidores , Inflamação/prevenção & controle , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de Complemento/antagonistas & inibidores , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Complemento C3a/metabolismo , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Receptores de Complemento/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/mortalidade , Traumatismo por Reperfusão/prevenção & controle , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Taxa de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
11.
Transl Stroke Res ; 2(4): 588-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22505955

RESUMO

INTRODUCTION: The complement cascade is a critical mediator of the inflammatory response following cerebral ischemia. Recent work has demonstrated that genetic-deficiency of Mannose-binding lectin(MBL) ameliorates reperfusion injury and improves outcome in the acute phase of stroke. The present study sought to further delineate the pathogenic role of MBL in stroke and to examine whether the neuroprotection associated with MBL-deficiency is sustained beyond the acute phase. We hypothesized that genetic MBL deficiency would suppress complement activation and ameliorate reperfusion injury in the acute phase, but that persistent inhibition of complement into the sub-acute phase would serve to abrogate this neuroprotective effect. METHODS: The time-course and localization of post-ischemic cerebral MBL and C3 deposition were characterized using both Western-blot and immunohistochemistry. MBL-a/c null(MBL-KO) mice subjected to transient middle cerebral artery occlusion(MCAO) were then employed to investigate the histologic injury and functional outcome associated with genetic MBL deletion at both 24 hours and 7 days. RESULTS: MBL-a/c rapidly deposit on ischemic endothelium and trigger downstream complement activation in the acute phase. Genetic deficiency of MBL abrogates C3 cleavage as well as the sub-acute accumulation of mononuclear cells in the ischemic region. Although MBL-KO mice demonstrate significantly improved outcome at 24 hours, the neuroprotective effect associated with genetic MBL deletion is not sustained. CONCLUSIONS: Development of a successful anti-complement neuroprotective strategy will require carefully-tailored inhibition coupled with a greater understanding of the functional effects of complement activation during later phases of stroke recovery.

12.
Expert Opin Pharmacother ; 10(12): 1895-906, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19514865

RESUMO

BACKGROUND: Ischemic stroke remains one of the leading causes of death and disability in the developed world. Despite many promising preclinical results, the only pharmacologic treatments proven effective in improving clinical outcome following ischemic stroke until now are administration of aspirin and acute thrombolysis using tissue-plasminogen activator. OBJECTIVE: To review currently approved pharmacologic therapies as well as promising future treatment strategies for acute ischemic stroke. METHODS: We performed an exhaustive PubMed search for articles published from 1950 through 2009 describing pharmacotherapy of acute ischemic stroke, focusing on agents that are currently in Phase III trials or approved for clinical use. Following this review, we present our interpretation of the existing literature and our vision of the future of pharmacotherapy for ischemic stroke. RESULTS/CONCLUSIONS: Since the clinical success of the first intravenous thrombolytic, many studies have sought to further characterize the ideal patient population and to extend the therapeutic time window for pharmacologic thrombolysis. Additionally, despite the many failures of neuroprotective trials, several promising agents are currently undergoing Phase III investigation. With the advent of interventional techniques enabling local delivery of therapeutics into the region of the thrombus, the future of pharmacotherapy for ischemic stroke will probably include a combination of interventional techniques and pharmacotherapy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Terapia Trombolítica , Humanos , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle
13.
Exp Neurol ; 219(2): 398-403, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19632224

RESUMO

Intracerebral hemorrhage (ICH) is the second most common and deadliest form of stroke. Currently, no pharmacologic treatment strategies exist for this devastating disease. Following the initial mechanical injury suffered at hemorrhage onset, secondary brain injury proceeds through both direct cellular injury and inflammatory cascades, which trigger infiltration of granulocytes and monocytes, activation of microglia, and disruption of the blood-brain barrier with resulting cerebral edema. The complement cascade has been shown to play a central role in the pathogenesis of secondary injury following ICH, although the specific mechanisms responsible for the proximal activation of complement remain incompletely understood. Cerebral injury following cleavage of complement component 3 (C3) proceeds through parallel but interrelated pathways of anaphylatoxin-mediated inflammation and direct toxicity secondary to membrane attack complex-driven erythrocyte lysis. Complement activation also likely plays an important physiologic role in recovery following ICH. As such, a detailed understanding of the variation in functional effects of complement activation over time is critical to exploiting this target as an exciting translational strategy for intracerebral hemorrhage.


Assuntos
Hemorragia Cerebral/fisiopatologia , Hemorragia Cerebral/terapia , Complemento C3/metabolismo , Mediadores da Inflamação/uso terapêutico , Animais , Ativação do Complemento/efeitos dos fármacos , Progressão da Doença , Humanos , Mediadores da Inflamação/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA