Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Mol Ecol ; 33(6): e17292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38339833

RESUMO

Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Deleção de Genes , Malária Falciparum/genética , Malária/genética
2.
Malar J ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287365

RESUMO

BACKGROUND: Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS: Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS: Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS: This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quênia/epidemiologia , Etiópia/epidemiologia , Resistência a Medicamentos/genética , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Antiparasitários , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
3.
Malar J ; 23(1): 26, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238768

RESUMO

BACKGROUND: Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., ivermectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and moxidectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis. METHODS: The 7-day sub-lethal concentrations of 25% (LC25) and 5% (LC5) were determined from in-vitro susceptibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted using P. vivax gametocytes infected patient's blood spiked with the LC25 and LC5 of the MLs. At 7-days post-feeding, each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solution, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model with binomially distributed error terms. RESULTS: A 7-day lethal concentration of 25% (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, a lethal concentration of 5% (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and control groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5). CONCLUSIONS: The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, particularly by reducing the vectors lifespan and causing mortality before completing the parasite's sporogony cycle or reducing their vector capacity as it affects the locomotor activity of the mosquito.


Assuntos
Anopheles , Macrolídeos , Malária Vivax , Malária , Animais , Feminino , Humanos , Plasmodium vivax , Ivermectina/farmacologia , Oocistos , Lactonas/farmacologia , Mosquitos Vetores , Malária Vivax/epidemiologia , Etiópia , Plasmodium falciparum
4.
Malar J ; 23(1): 76, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486245

RESUMO

BACKGROUND: Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS: A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS: Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS: Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.


Assuntos
Malária Falciparum , Malária Vivax , Humanos , Plasmodium vivax/genética , Malária Vivax/epidemiologia , Etiópia/epidemiologia , Saúde Pública , Malária Falciparum/epidemiologia , Febre , Instalações de Saúde
5.
Malar J ; 23(1): 194, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902674

RESUMO

BACKGROUND: Malaria remains a severe parasitic disease, posing a significant threat to public health and hindering economic development in sub-Saharan Africa. Ethiopia, a malaria endemic country, is facing a resurgence of the disease with a steadily rising incidence. Conventional diagnostic methods, such as microscopy, have become less effective due to low parasite density, particularly among Duffy-negative human populations in Africa. To develop comprehensive control strategies, it is crucial to generate data on the distribution and clinical occurrence of Plasmodium vivax and Plasmodium falciparum infections in regions where the disease is prevalent. This study assessed Plasmodium infections and Duffy antigen genotypes in febrile patients in Ethiopia. METHODS: Three hundred febrile patients visiting four health facilities in Jimma town of southwestern Ethiopia were randomly selected during the malaria transmission season (Apr-Oct). Sociodemographic information was collected, and microscopic examination was performed for all study participants. Plasmodium species and parasitaemia as well as the Duffy genotype were assessed by quantitative polymerase chain reaction (qPCR) for all samples. Data were analysed using Fisher's exact test and kappa statistics. RESULTS: The Plasmodium infection rate by qPCR was 16% (48/300) among febrile patients, of which 19 (39.6%) were P. vivax, 25 (52.1%) were P. falciparum, and 4 (8.3%) were mixed (P. vivax and P. falciparum) infections. Among the 48 qPCR-positive samples, 39 (13%) were negative by microscopy. The results of bivariate logistic regression analysis showed that agriculture-related occupation, relapse and recurrence were significantly associated with Plasmodium infection (P < 0.001). Of the 300 febrile patients, 85 (28.3%) were Duffy negative, of whom two had P. vivax, six had P. falciparum, and one had mixed infections. Except for one patient with P. falciparum infection, Plasmodium infections in Duffy-negative individuals were all submicroscopic with low parasitaemia. CONCLUSIONS: The present study revealed a high prevalence of submicroscopic malaria infections. Plasmodium vivax infections in Duffy-negative individuals were not detected due to low parasitaemia. In this study, an improved molecular diagnostic tool was used to detect and characterize Plasmodium infections, with the goal of quantifying P. vivax infection in Duffy-negative individuals. Advanced molecular diagnostic techniques, such as multiplex real-time PCR, loop-mediated isothermal amplification (LAMP), and CRISPR-based diagnostic methods. These techniques offer increased sensitivity, specificity, and the ability to detect low-parasite-density infections compared to the employed methodologies.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Genótipo , Malária Falciparum , Malária Vivax , Plasmodium falciparum , Plasmodium vivax , Sistema do Grupo Sanguíneo Duffy/genética , Humanos , Masculino , Feminino , Adulto , Adolescente , Adulto Jovem , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Etiópia/epidemiologia , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Pessoa de Meia-Idade , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Criança , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Pré-Escolar , Técnicas de Diagnóstico Molecular/métodos , Idoso , Lactente , Estudos Transversais , Prevalência , Febre/parasitologia
6.
BMC Pulm Med ; 24(1): 135, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491509

RESUMO

BACKGROUND: Household contacts of tuberculosis (TB) patients are at a greater risk of infection and developing TB as well. Despite recommendations to actively screen such high-risk groups for TB, it is poorly implemented in Ethiopia. A community-based household contact screening was conducted to compare the yield of two different screening approaches and to identify factors associated with TB occurrence. METHODS: Smear-positive pulmonary TB index cases from six health facilities in six districts of Silti Zone were identified and enrolled prospectively between September 2020 and December 2022. Trained healthcare workers conducted house visits to screen household contacts for TB. WHO (World Health Organization) recommended symptom-based screening algorithms were used. The yield of screening was compared between a two-time screening at study site I and a single baseline screening at study site II, which is the current programmatic approach. Generalized estimating equation was used to run multivariate logistic regression to identify factors associated with TB occurrence. RESULTS: A total of 387 index TB cases (193 at site I and 194 at site II) with 1,276 eligible contacts were included for analysis. The TB yield of repeat screening approach did not show a significant difference compared to a single screening (2.3% at site I vs. 1.1% at site II, p < 0.072). The number needed to screen was 44 and 87 for the repeat and single screening, respectively, indicating a high TB burden in both settings. The screening algorithm for patients with comorbidities of asthma and heart failure had a 100% sensitivity, 19.1% specificity and a positive predictive value of 5.6%. Cough [AOR: 10.9, 95%CI: 2.55,46.37], fatigue [AOR: 6.1, 95%CI: 1.76,21.29], daily duration of contact with index case [AOR: 4.6, 95%CI; 1.57,13.43] and age of index cases [AOR: 0.9, 95%CI; 0.91-0.99] were associated with the occurrence of TB among household contacts. CONCLUSION: Our study showed that the yield of TB was not significantly different between one-time screening and repeat screening. Although repeat screening has made an addition to case notification, it should be practiced only if resources permit. Cough, fatigue, duration of contact and age of index cases were factors associated with TB. Further studies are needed to establish the association between older age and the risk of transmitting TB.


Assuntos
Busca de Comunicante , Tuberculose , Humanos , Estudos Prospectivos , Etiópia/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tosse/diagnóstico , Tosse/epidemiologia
7.
Malar J ; 22(1): 12, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624480

RESUMO

BACKGROUND: Innovative vector control tools are needed to counteract insecticide resistance and residual malaria transmission. One of such innovative methods is an ivermectin (IVM) treatment to reduce vector survival. In this study, a laboratory experiment was conducted to investigate the effect of ivermectin on survivorship, fertility and egg hatchability rate of Anopheles arabiensis in Ethiopia. METHODS: An in vitro experiment was conducted using 3-5 days old An. arabiensis adults from a colony maintained at insectary of Tropical and Infectious Diseases Research Center, Jimma University (laboratory population) and Anopheles mosquitoes reared from larvae collected from natural mosquito breeding sites (wild population). The mosquitoes were allowed to feed on cattle blood treated with different doses of ivermectin (0 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml and 80 ng/ml). During each feeding experiment, the mosquitoes were held in cages and blood-fed using a Hemotek feeder. Mortality and egg production were then recorded daily for up to 9 days. Time to death was analysed by a Cox frailty model with replicate as frailty term and source of mosquito (wild versus laboratory), treatment type (ivermectin vs control) and their interaction as categorical fixed effects. Kaplan Meier curves were plotted separately for wild and laboratory populations for a visual interpretation of mosquito survival as a function of treatment. RESULTS: Both mosquito source and treatment had a significant effect on survival (P < 0.001), but their interaction was not significant (P = 0.197). Compared to the controls, the death hazard of An. arabiensis that fed on ivermectin-treated blood was 2.3, 3.5, 6.5, 11.5 and 17.9 times that of the control for the 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, and 80 ng/ml dose, respectively. With respect to the number of hatched larvae, hatched pupae and emerged adults per fed mosquitoes, a significant difference was found between the control and the 5 ng/ml dose group (P < 0.001). The number of hatched larvae and pupae, and emerged adults decreased further for the 10 ng/ml dose group and falls to zero for the higher doses. CONCLUSION: Treating cattle blood with ivermectin reduced mosquito survival, fertility, egg hatchability, larval development and adult emergence of An. arabiensis in all tested concentrations of ivermectin in both the wild and laboratory populations. Thus, ivermectin application in cattle could be used as a supplementary vector control method to tackle residual malaria transmission and ultimately achieve malaria elimination in Ethiopia.


Assuntos
Anopheles , Fragilidade , Inseticidas , Malária , Animais , Bovinos , Ivermectina/farmacologia , Inseticidas/farmacologia , Etiópia/epidemiologia , Sobrevivência , Mosquitos Vetores , Malária/prevenção & controle , Fertilidade , Controle de Mosquitos/métodos
8.
Malar J ; 22(1): 311, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845680

RESUMO

BACKGROUND: Schoolchildren with asymptomatic malaria infections often go undiagnosed and untreated, serving as reservoirs for infection that hamper malaria control and elimination efforts. In this context, little is known about the magnitude of asymptomatic malaria infections in apparently healthy schoolchildren in Ethiopia. This study was aimed at determining the prevalence of asymptomatic malaria infection and its associated factors in apparently healthy schoolchildren in Ethiopia. METHODS: From September 2021 to January 2022, a school-based cross-sectional study was conducted on 994 apparently healthy schoolchildren (aged 6-15 years) selected from 21 primary schools in the Gomma district, of Jimma zone, southwestern Oromia, Ethiopia. A multi-stage sampling technique was used to select schools and participants. After allocating the total sample proportionally to each school and then to each grade, participants were selected using the lottery method from a list of student records (rosters). Finger-pricked blood samples were collected for microscopy blood film preparation and malaria rapid diagnostic test (RDT) (SD Bioline Malaria Ag Pf/Pv). Moreover, dry blood spots (DBSs) were prepared onto filter papers for quantitative real time polymerase chain reaction (qPCR) analysis. RESULTS: As determined by RDT and microscopy, the prevalence of asymptomatic malaria was 2.20% and 1.51%, respectively. Using qPCR, the overall prevalence was 5.03% (50/994). Of this, Plasmodium falciparum, Plasmodium vivax and mixed infections accounted for 90%, 6% and 4%, respectively. Submicroscopic asymptomatic malaria infection was also accounted for 70% (35/50) of the overall prevalence. Household head age, nighttime outdoor activities of household heads, family history of malaria, absence of insecticide-treated nets (ITN), and presence of stagnant water around the houses are all significantly associated with asymptomatic malaria infections among schoolchildren. CONCLUSIONS: This study found that both RDT and microscopy underestimated the prevalence of asymptomatic malaria in schoolchildren. However, qPCR was able to detect even low levels of parasitaemia and revealed a higher prevalence of asymptomatic submicroscopic malaria infections. The findings imply that schoolchildren with asymptomatic malaria infection are potential hotspot for malaria reservoir that fuels ongoing transmission. Therefore, it is imperative to include schoolchildren and schools in malaria intervention package and equally important is the adoption of more advanced and sensitive diagnostic tools, which would be crucial for successful malaria control and elimination efforts. Targeted interventions for asymptomatic malaria-infected schoolchildren can provide invaluable support to the National Malaria Control Programme in controlling and eventually eliminating the disease.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Criança , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Malária Vivax/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/diagnóstico , Etiópia/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle , Plasmodium falciparum , Infecções Assintomáticas/epidemiologia , Prevalência
9.
Malar J ; 22(1): 354, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981691

RESUMO

BACKGROUND: Ultrasensitive rapid diagnostic test (usRDT) was recently developed to improve the detection of low-density Plasmodium falciparum infections. However, its diagnostic performance has not been evaluated in the Democratic Republic of Congo (DRC). This study aims to determine the performance of the usRDT in malaria diagnosis in asymptomatic individuals under field condition in Kisangani, Northeast of DRC. METHODS: A community-based cross-sectional study was carried out from June to August 2022 on 312 asymptomatic individuals residing in the city of Kisangani. Capillary blood samples were collected by finger prick for microscopic examination of thick and thin blood film, RDTs, and nested polymerase chain reaction (PCR). Alere™ Malaria Ag P.f usRDT and conventional RDT (cRDT/SD Bioline Malaria Ag P.f) kits were used for the detection of Plasmodium histidine rich protein 2 (HRP2) antigen as a proxy for the presence of P. falciparum. The diagnostic performance of the usRDT was compared with cRDT, microscopy and PCR. RESULTS: The prevalence of asymptomatic P. falciparum malaria was 40.4%, 42.0%, 47.1% and 54.2% by cRDT, microscopy, usRDT and PCR, respectively. By using PCR as a reference, usRDT had sensitivity and specificity of 87.0% (95% CI 81.4-91.7) and 100.0% (95% CI 97.5-100.0), respectively, whereas the cRDT had sensitivity and specificity of 74.6% (95% CI 67.3-80.9) and 100% (95% CI 97.1-100.0), respectively. By using microscopy as a reference, usRDT had sensitivity and specificity of 96.9% (95% CI 92.4-99.2) and 89.0% (95% CI 83.5-93.1), respectively, while the cRDT had sensitivity and specificity of 96.2% (95% CI 92.3-98.7) and 100% (95% CI 97.9-100.0), respectively. CONCLUSION: The usRDT showed better diagnostic performance with higher sensitivity than the cRDT which is currently in use as point-of-care test. Further research is necessary to assess the access and cost-effectiveness of the usRDTs to use for malaria surveillance.


Assuntos
Malária Falciparum , Testes de Diagnóstico Rápido , Humanos , República Democrática do Congo/epidemiologia , Plasmodium falciparum , Estudos Transversais , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Antígenos de Protozoários
10.
Malar J ; 22(1): 284, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752572

RESUMO

BACKGROUND: Malaria remains a major public health threat in Ethiopia despite the tremendous progress made towards the 2030 elimination targets. The silent transmission of asymptomatic infection is one of the factors that enhance the persistence of the disease as a public health issue and impedes efforts to eliminate malaria. Thus, this study aimed at investigating the prevalence and risk factors of asymptomatic malaria infection in Boricha district, Sidama region of Ethiopia. METHODS: A community-based cross-sectional study was conducted in eight selected kebeles (smallest administrative unit) in Boricha district. Representative households were chosen using a multi-stage sampling technique. A total of 573 participants were included in the study. Malaria diagnosis was performed using rapid diagnostic test (RDT) and microscopy. A structured questionnaire was administered to collect socio-demographic information. Epi data 3.1 was employed for data entry, and SPSS version 25 was used for analysis. RESULTS: Of the 573 asymptomatic participants tested, 6.1% were found to be positive by RDT and 4.0% by microscopy. Participants aged under 5 years (AOR = 1.57, 95% CI 0.46-5.39) and 5-14 years old (AOR = 2.42, 95% CI 1.08-5.40), Insecticide-treated net utilization (AOR = 8.41; 95% CI 1.09-65.08), travel history (AOR = 6.85, 95% CI 2.32-20.26) and living in a house with windows (AOR = 2.11, 95% CI 1.02-4.36) were significantly associated with the asymptomatic malaria infection. CONCLUSION: The findings of this study revealed that prevalence of asymptomatic malaria infection was higher in the study area. As a result, rigorous implementation of existing interventions, such as vector control and anti-malaria drugs, is strongly recommended. In addition, devising new ones that are suited to the contextual situations is highly suggested.


Assuntos
Infecções Assintomáticas , Malária , Humanos , Idoso , Etiópia/epidemiologia , Prevalência , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle
11.
Malar J ; 22(1): 233, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573300

RESUMO

BACKGROUND: Anopheles funestus, which is considered as secondary vector of malaria in Ethiopia, is known to have several morphologically indistinguishable (sibling) species. Accurate identification of sibling species is crucial to understand their biology, behaviour and vector competence. In this study, molecular identification was conducted on the Ethiopian An. funestus populations. Moreover, insecticide resistance mechanism markers were detected, including ace N485I, kdr L1014F, L1014S, and CYP6P9a TaqMan qPCR was used to detect the infective stage of the parasite from field collected adult female An. funestus populations. METHODS: Adult female mosquito collection was conducted from Lare, Gambella Regional State of Ethiopia between June 2018 to July 2020 using CDC light traps and HLC. Sub-samples of the morphologically identified An. funestus mosquitoes were molecularly identified using species-specific PCR, and the possible presence of insecticide resistance alleles was investigated using TaqMan qPCR (N485I-Ace-1), PCR-Sanger sequencing (L1014F-kdr), and PCR-RFLP (CYP6P9a resistance allele). Following head/thorax dissection, the TaqMan qPCR assay was used to investigate the presence of the infective stage Plasmodium parasite species. RESULTS: A total of 1086 adult female An. funestus mosquitoes were collected during the study period. All sub-samples (N = 20) that were morphologically identified as An. funestus sensu lato (s.l.) were identified as An. funestus sensu stricto (s.s.) using species- specific PCR assay. The PCR-RFLP assay that detects the CYP6P9a resistance allele that confers pyrethroid resistance in An. funestus was applied in N = 30 randomly selected An. funestus s.l. SPECIMENS: None of the specimens showed a digestion pattern consistent with the presence of the CYP6P9a resistance allele in contrast to what was observed in the positive control. Consequently, all samples were characterized as wild type. The qPCR TaqMan assay that detects the N485I acetylcholinesterase-1 mutation conferring resistance to organophosphates/carbamates in An. funestus was used in (N = 144) samples. All samples were characterized as wild type. The kdr L1014F and L1014S mutations in the VGSC gene that confer resistance to pyrethroids and DDT were analysed with direct Sanger sequencing after PCR and clean-up of the PCR products were also characterized as wild type. None of the samples (N = 169) were found positive for Plasmodium (P. falciparum/ovale/malariae/vivax) detection. CONCLUSION: All An. funestus s.l. samples from Lare were molecularly identified as An. funestus s.s. No CYP6P9, N485I acetylcholinesterase 1, kdr L1014F or L1014S mutations were detected in the An. funestus samples. None of the An. funestus samples were positive for Plasmodium. Although the current study did not detect any insecticide resistant mechanism, it provides a reference for future vector monitoring programmes. Regular monitoring of resistance mechanisms covering wider geographical areas of Ethiopia where this vector is distributed is important for improving the efficacy of vector control programs.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Anopheles/genética , Acetilcolinesterase , Alelos , Etiópia , Mosquitos Vetores/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética
12.
Malar J ; 22(1): 112, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991438

RESUMO

BACKGROUND: One of the major roadblocks to the falciparum malaria elimination programme is the presence of a portion of the population, such as school children, with asymptomatic malaria infection. Targeting such reservoirs of infections is critical to interrupting transmission and enhancing elimination efforts. The NxTek™ Eliminate Malaria Pf test is a highly sensitive rapid diagnostic test (hsRDT) for the detection of HRP-2. However, knowledge gaps exist in Ethiopia on the diagnostic performance of hsRDT for the detection of Plasmodium falciparum in school children with asymptomatic malaria. METHODS: A school-based cross-sectional study was conducted from September 2021 to January 2022 on 994 healthy school children (aged 6-15 years). Finger-pricked whole blood samples were collected for microscopy, hsRDT, conventional RDT (cRDT or SD Bioline Malaria Ag Pf/P.v), and QuantStudio™ 3 Real-Time PCR system (qPCR). The hsRDT was compared to cRDT and microscopy. qPCR and microscopy were used as reference methods. RESULTS: The prevalence of Plasmodium falciparum was 1.51%, 2.2%. 2.2% and 4.52%, by microscopy, hsRDT, cRDT and qPCR, respectively. Using qPCR as reference, the sensitivity of hsRDT was higher (48.89%) than the microscopy (33.3%), and showed 100% specificity and a positive predictive value (PPV). Microscopy showed similar specificity and PPV as hsRDT. Using microscopy as a reference, the diagnostic perforrmances of both hsRDT and cRDT were similar. Both RDTs demonstrated identical diagnostic performances in both comparison methods. CONCLUSIONS: hsRDT has the same diagnostic performance as cRDT but improved diagnostic characteristics than microscopy for detection of P. falciparum in school children with asymptomatic malaria. It can be a useful tool for the national malaria elimination plan of Ethiopia.


Assuntos
Malária Falciparum , Malária , Humanos , Criança , Plasmodium falciparum/genética , Estudos Transversais , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Assintomáticas , Testes Diagnósticos de Rotina/métodos , Sensibilidade e Especificidade
13.
Malar J ; 22(1): 350, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968712

RESUMO

BACKGROUND: Water resource development projects are essential for increasing agricultural productivity and ensuring food security. However, these activities require the modification of pre-existing environmental settings, which may alter mosquito larval habitat availability and seasonality. The intensive utilization of current adult vector control tools results in insecticide resistance among the main vectors. When coupled with behavioural resistances, a shift in malaria vector feeding and resting behaviours could compromise the effectiveness of the current adult vector control strategies. Thus, it is important to look for new or alternative vector control interventions for immatures to complement adult control by focusing on different larval habitats and their seasonal availability. Thus, this study investigated larval habitat seasonality and seasonal larval abundance and distribution in irrigated sugar cane plantation settings in Ethiopia. METHODS: Anopheles mosquito larval habitats were surveyed and visited twice a month for a period of 14 months. Anopheline larvae and pupae were collected, reared, and fed finely ground fish food. Adults were provided with sucrose solution and kept under standard conditions. Female Anopheles mosquitoes were identified morphologically and using a species-specific PCR assay. Environmental parameters, which include habitats' physico-chemical characteristics, were assessed. Larval habitat diversity and larval abundance and distribution were determined across different seasons. RESULTS: The study revealed that Anopheles gambiae sensu lato (s.l.) was the most predominant 4197(57%) vector species, followed by Anopheles coustani complex 2388 (32.8%). Molecular analysis of sub-samples of An. gambiae s.l. resulted in Anopheles arabiensis (77.9%) and Anopheles amharicus (21.5%), and the remaining 1.1% (n = 7) sub-samples were not amplified. Physico-chemical parameters such as temperature (t = 2.22, p = 0.028), conductivity (t = 3.21, p = 0.002), dissolved oxygen (t = 7.96, p = 0.001), nitrate ion (t = 2.51, p = 0.013), and ammonium ion (t = 2.26, p = 0.025) showed a significant and direct association with mosquito larval abundance. Furthermore, mosquito larval abundance was correlated with distance to the nearest houses (r = - 0.42, p = 0.001), exposure to sunlight (r = 0.34, p = 0.001), during long and short rainy season animal hoof prints, truck tires/road puddles and rain pools were negatively correlated (r = - 0.22, p = 0.01) and types of habitat (r = - 0.20, p = 0.01). Significant habitat type productivity were observed in man-made pools (t = 3.881, P = 0.01163), rain pools, animal hoof prints, (t = - 4.332, P = 0.00749 in both short and long rainy season, whereas, during dry seasons habitat type productivity almost similar and have no significance difference. CONCLUSION: The study found that different larval habitats had variable productivity in different seasons, and that physical and physicochemical features like ammonium and nitrate, as well as the distance between larval habitats and households, are related to larval production. As a result, vector control should take into account the seasonality of Anopheles larval habitat as well as the impact of pesticide application on larval source management.


Assuntos
Compostos de Amônio , Anopheles , Malária , Saccharum , Humanos , Animais , Feminino , Larva , Etiópia , Nitratos , Mosquitos Vetores , Ecossistema , Estações do Ano
14.
Malar J ; 22(1): 341, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940948

RESUMO

BACKGROUND: Water resource development projects, such as dams and irrigation schemes, have a positive impact on food security and poverty reduction. However, such projects could increase prevalence of vector borne disease, such as malaria. This study investigate the impact of different agroecosystems and prevalence of malaria infection in Southwest Ethiopia. METHODS: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 study participants from 1449 households in Arjo and 546 households in Gambella enrolled in the study and blood samples were collected, respectively. All blood samples were microscopically examined and a subset of microscopy negative blood samples (n = 2244) were analysed by qPCR. Mixed effect logistic regression and generalized estimating equation were used to determine microscopic and submicroscopic malaria infection and the associated risk factors, respectively. RESULTS: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). On the other hand, of the 1713 and 531 samples analysed by qPCR from Arjo and Gambella the presence of submicroscopic infection was 1.2% and 12.8%, respectively. Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale were identified by qPCR in both sites. Irrigation was a risk factor for submicroscopic infection in both Arjo and Gambella. Irrigation, being a migrant worker, outdoor job, < 6 months length of stay in the area were risk factors for microscopic infection in Gambella. Moreover, school-age children and length of stay in the area for 1-3 years were significant predictors for submicroscopic malaria in Gambella. However, no ITN utilization was a predictor for both submicroscopic and microscopic infection in Arjo. Season was also a risk factor for microscopic infection in Arjo. CONCLUSION: The study highlighted the potential importance of different irrigation practices impacting on submicroscopic malaria transmission. Moreover, microscopic and submicroscopic infections coupled with population movement may contribute to residual malaria transmission and could hinder malaria control and elimination programmes in the country. Therefore, strengthening malaria surveillance and control by using highly sensitive diagnostic tools to detect low-density parasites, screening migrant workers upon arrival and departure, ensuring adequate coverage and proper utilization of vector control tools, and health education for at-risk groups residing or working in such development corridors is needed.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Oryza , Saccharum , Humanos , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Malária/epidemiologia , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Prevalência , Criança
15.
Exp Parasitol ; 253: 108605, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659710

RESUMO

Outdoor biting, outdoor resting, and early evening biting of Anopheles arabiensis is a challenge in current malaria control and elimination efforts in Africa. Zooprophylaxis using livestock treated with macrocyclic lactones is a novel approach to control zoophilic vectors. Therefore, the present study aimed to investigate the pharmacokinetics and insecticidal efficacy of ivermectin (IVER), doramectin (DORA), and moxidectin (MOXI) subcutaneous (SC) formulations in treated calves. The study was conducted using indigenous (Bos indicus) calves treated with SC formulation at a dosage of 0.5, 0.2 or 0.05 mg/kg body weight (BW) IVER or DORA and 0.2 or 0.05 mg/kg BW MOXI. Direct skin feeding of mosquitoes and animal blood sampling were performed at 4, 8, 12, and 24 h and on days 2, 3, 5, 7, 10, 14, 21, 28, and 35 post treatment. The survival of fully fed A. arabiensis mosquitoes was monitored for 10 days. Plasma samples were analyzed using UHPLC-MS/MS. A. arabiensis mortality percentages in the 0.5 mg/kg BW DORA and IVER groups were 65.74% (95% CI: [54.98; 76.50]) and 64.53% (95% CI: [53.77; 75.29]), respectively, over 35 days post treatment. At the recommended dose (0.2 mg/kg BW), promising overall A. arabiensis mortality rates of 61.79% (95% CI: [51.55; 72.03]) and 61.78% (95% CI: [51.02; 72.54]) were observed for IVER and DORA, respectively. In contrast, A. arabiensis mortality in the MOXI group was 50.23% (95% CI: [39.87, 60.58]). At 0.2 mg/kg BW dose, area under the plasma concentration versus time curve (AUC0-inf) values for IVER, DORA, and MOXI were 382.53 ± 133.25, 395.41 ± 132.12, and 215.85 ± 63.09 ng day/mL, respectively. An extended elimination half-life (T1/2el) was recorded for DORA (4.28 ± 0.93 d), at 0.2 mg/kg BW dose level, compared to that for IVER (3.16 ± 1.47 d). The T1/2el of MOXI was 2.17 ± 0.44 day. A maximum plasma concentration (Cmax) was recorded earlier for MOXI (10 h) than for IVER (1.6 days) and longer for DORA (3.0 days). For DORA and IVER, significant differences were found in T1/2el (P<0.05), Cmax (P<0.01), and AUC0-inf (P<0.01) between the higher 0.5 mg/kg BW and the lower 0.05 mg/kg BW doses. The T1/2el and AUC0-inf of DORA and IVER in the present study were significantly (p < 0.05) correlated with the observed insecticidal efficacy against A. arabiensis mosquitoes at 0.2 mg/kg a dose. Therefore, treating cattle with IVER or DORA could complement the malaria vector control interventions, especially in Ethiopia, where the zoophilic malaria vector A. arabiensis majorly contribute for residual malaria transmission.


Assuntos
Anopheles , Inseticidas , Malária , Bovinos , Animais , Inseticidas/farmacologia , Lactonas , Espectrometria de Massas em Tandem , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária/veterinária , Mosquitos Vetores
16.
Malar J ; 21(1): 125, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436961

RESUMO

BACKGROUND: Anopheles arabiensis, member species of the Anopheles gambiae complex, is the primary vector of malaria and is widely distributed in Ethiopia. Anopheles funestus, Anopheles pharoensis and Anopheles nili are secondary vectors occurring with limited distribution in the country. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are pillars for the interventions against malaria control and elimination efforts in Ethiopia. However, the emergence and widespread of insecticide resistance in An. gambiae sensu lato (s.l.), might compromise the control efforts of the country. The aim of this study was to investigate composition of mosquito fauna and insecticide resistance status of An. gambiae s.l. in Itang special district ( woreda), Gambella, southwestern Ethiopia. METHODS: Adult mosquitoes were sampled from September 2020 to February 2021 using the CDC light trap and pyrethrum spray catch (PSC). CDC light traps were placed in three selected houses for two consecutive days per month to collect mosquitoes indoor and outdoor from 6:00 P.M. to 06:00 A.M. and PSC was used to collect indoor resting mosquitoes from ten selected houses once in a month from October 2020 to February 2021. Moreover, mosquito larvae were also collected from different breeding sites and reared to adults to assess susceptibility status of populations of An. gambiae s.l. in the study area. Susceptibility tests were conducted on two to three days old non blood fed female An. gambiae s.l. using insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) following World Health Organization (WHO) standard susceptibility test procedure. Molecular diagnostics were done for the identification of member species of An. gambiae s.l. and detection of knockdown resistance (kdr) allele using species specific polymerase chain reaction (PCR) and allele specific PCR. RESULTS: In total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles (Anopheles coustani, An. pharoensis, and An. gambiae s.l.) were identified, of which An. coustani was the dominant (8.1%) species. Higher number of mosquitoes (231) were collected outdoor by CDC light traps. Out of 468 adult mosquitoes, 294 were blood fed, 46 were half-gravid and gravid whereas the remaining 128 were unfed. WHO bioassay tests revealed that the populations of An. gambiae s.l. in the study area are resistant against alpha-cypermethrin and deltamethrin, but susceptible to bendiocarb, pirimiphos-methyl and propoxur. Of the total 86 An. gambiae s.l. specimens assayed, 79 (92%) successfully amplified and identified as An. arabiensis. West African kdr (L1014F) mutation was detected with high kdr allele frequency ranging from 67 to 88%. CONCLUSION: The detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Etiópia , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Propoxur
17.
Malar J ; 21(1): 364, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461066

RESUMO

BACKGROUND: The rate of decay of the biological efficacy of insecticides used for indoor residual spraying (IRS) is an important factor when making decisions on insecticide choice for national malaria control programmes. A key roadblock to IRS programme is insecticide resistance. If resistance is detected to most of the existing insecticides used for IRS (DDT, pyrethroids, organophosphates and carbamates), the logical next choice could be neonicotinoid insecticides, as pyrethroids are used to treat nets. SumiShield™ 50WG belongs to the neonicotinoid class of insecticides and has shown promising results in several phase I, II and III trials in different settings. The aim of this study was to assess the persistence of SumiShield™ 50WG by spraying on different wall surfaces and determine its decay rates over time in Ethiopia. METHODS: Five huts with different wall surface types (mud, dung, paint and cement) which represented the Ethiopian house wall surfaces were used to evaluate the residual efficacy of SumiShield™ 50WG. Actellic 300CS sprayed on similar wall surfaces of another five huts was used as a comparator insecticide and two huts sprayed with water were used as a control. All huts were sprayed uniformly by an experienced spray operator; non-stop starting from the door and moving clockwise to cover the entire wall surface of the hut. The treatments were assigned to huts randomly. The residual efficacy of the insecticide formulations was evaluated against a susceptible insectary-reared population of Anopheles arabiensis using WHO cone bioassays. RESULTS: SumiShield™ 50WG resulted in mortality rates of over 80% at 120 h post-exposure on all surface types for up to nine months post-spray, while Actellic 300CS yielded mortality rates of over 80% for eight months after spray. CONCLUSIONS: The results of this trial demonstrated that the residual efficacy of SumiShield™ 50WG extends up to nine months on all treated wall surface types. The long-lasting residual efficacy and unique mode of action of the SemiShield™ 50WG shows that it could be an ideal product to be considered as a potential candidate insecticide formulation for IRS in malaria endemic countries such as Ethiopia or other sub-Saharan countries where the transmission season lasts up to four months or longer.


Assuntos
Inseticidas , Piretrinas , Etiópia , Inseticidas/farmacologia , Neonicotinoides
18.
Malar J ; 21(1): 238, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987650

RESUMO

BACKGROUND: Pyrethroid resistance observed in populations of malaria vectors is widespread in Ethiopia and could potentially compromise the effectiveness of insecticide-based malaria vector control interventions. In this study, the impact of combining indoor residual spraying (IRS) and insecticide-treated nets (ITNs) on mosquito behaviour and mortality was evaluated using experimental huts. METHODS: A Latin Square Design was employed using six experimental huts to collect entomological data. Human volunteers slept in huts with different types of nets (pyrethroid-only net, PBO net, and untreated net) either with or without IRS (Actellic 300CS). The hut with no IRS and an untreated net served as a negative control. The study was conducted for a total of 54 nights. Both alive and dead mosquitoes were collected from inside nets, in the central rooms and verandah the following morning. Data were analysed using Stata/SE 14.0 software package (College Station, TX, USA). RESULTS: The personal protection rate of huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone was 33.3% and 50%, respectively. The mean killing effect of huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone was 2% and 49%, respectively. Huts with PermaNet® 2.0 alone and PermaNet® 3.0 alone demonstrated significantly higher excito-repellency than the control hut. However, mosquito mortality in the hut with IRS + untreated net, hut with IRS + PermaNet® 2.0 and hut with IRS + PermaNet® 3.0 were not significantly different from each other (p > 0.05). Additionally, pre-exposure of both the susceptible Anopheles arabiensis laboratory strain and wild Anopheles gambiae sensu lato to PBO in the cone bioassay tests of Actellic 300CS sprayed surfaces did not reduce mosquito mortality when compared to mortality without pre-exposure to PBO. CONCLUSION: Mosquito mortality rates from the huts with IRS alone were similar to mosquito mortality rates from the huts with the combination of vector control intervention tools (IRS + ITNs) and mosquito mortality rates from huts with PBO nets alone were significantly higher than huts with pyrethroid-only nets. The findings of this study help inform studies to be conducted under field condition for decision-making for future selection of cost-effective vector control intervention tools.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Etiópia , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Compostos Organotiofosforados , Piretrinas/farmacologia
19.
BMC Public Health ; 22(1): 196, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093055

RESUMO

BACKGROUND: Land use change has increasingly been expanding throughout the world in the past decades. It can have profound effects on the spatial and temporal distribution of vector borne diseases like malaria through ecological and habitat change. Understanding malaria disease occurrence and the impact of prevention interventions under this intense environmental modification is important for effective and efficient malaria control strategy. METHODS: A descriptive ecological study was conducted by reviewing health service records at Abobo district health office. The records were reviewed to extract data on malaria morbidity, mortality, and prevention and control methods. Moreover, Meteorological data were obtained from Gambella region Meteorology Service Center and National Meteorology Authority head office. Univariate, bivariate and multivariate analysis techniques were used to analyze the data. RESULTS: For the twelve-year time period, the mean annual total malaria case count in the district was 7369.58. The peak monthly malaria incidence was about 57 cases per 1000 people. Only in 2009 and 2015 that zero death due to malaria was recorded over the past 12 years. Fluctuating pattern of impatient malaria cases occurrence was seen over the past twelve years with an average number of 225.5 inpatient cases. The data showed that there is a high burden of malaria in the district. Plasmodium falciparum (Pf) was a predominant parasite species in the district with the maximum percentage of about 90. There was no statistically significant association between season and total malaria case number (F3,8: 1.982, P:0.195). However, the inter-annual total case count difference was statistically significant (F11,132: 36.305, p < 0001). Total malaria case count had shown two months lagged carry on effect. Moreover, 3 months lagged humidity had significant positive effect on total malaria cases. Malaria prevention interventions and meteorological factors showed statistically significant association with total malaria cases. CONCLUSION: Malaria was and will remain to be a major public health problem in the area. The social and economic impact of the disease on the local community is clearly pronounced as it is the leading cause of health facility visit and admission including the mortality associated with it. Scale up of effective interventions is quite important. Continuous monitoring of the performance of the vector control tools needs to be done.


Assuntos
Malária Falciparum , Malária , Agricultura , Clima , Etiópia/epidemiologia , Humanos , Malária/epidemiologia , Malária/parasitologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Plasmodium falciparum
20.
J Infect Dis ; 224(8): 1422-1431, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33534886

RESUMO

Plasmodium vivax malaria was thought to be rare in Africa, but an increasing number of P. vivax cases reported across Africa and in Duffy-negative individuals challenges this dogma. The genetic characteristics of P. vivax in Duffy-negative infections, the transmission of P. vivax in East Africa, and the impact of environments on transmission remain largely unknown. This study examined genetic and transmission features of P. vivax from 107 Duffy-negative and 305 Duffy-positive individuals in Ethiopia and Sudan. No clear genetic differentiation was found in P. vivax between the 2 Duffy groups, indicating between-host transmission. P. vivax from Ethiopia and Sudan showed similar genetic clusters, except samples from Khartoum, possibly due to distance and road density that inhibited parasite gene flow. This study is the first to show that P. vivax can transmit to and from Duffy-negative individuals and provides critical insights into the spread of P. vivax in sub-Saharan Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Plasmodium vivax/isolamento & purificação , África Oriental/epidemiologia , Sistema do Grupo Sanguíneo Duffy/genética , Pool Gênico , Variação Genética , Humanos , Malária Vivax/epidemiologia , Malária Vivax/genética , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Receptores de Superfície Celular/genética , Sudão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA