Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 78: 107-119, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27684323

RESUMO

We propose a deformable registration approach to estimate patient-specific lung motion during free breathing for four-dimensional (4D) computed tomography (CT) based on point matching and tracking between images in different phases. First, a robust point matching (RPM) algorithm coarsely aligns the source phase image onto all other target phase images of 4D CT. Scale-invariant feature transform (SIFT) is introduced into the cost function in order to accelerate and stabilize the convergence of the point matching. Next, the temporal consistency of the estimated lung motion model is preserved by fitting the trajectories of the points in the respiratory phase using L1 norm regularization. Then, the fitted positions of a point along the trajectory are used as the initial positions for the point tracking. Spatial mean-shift iteration is employed to track points in all phase images. The tracked positions in all phases are used to perform RPM again. These steps are repeated until the number of updated points is smaller than a given threshold σ. With this method, the correspondence between the source phase image and other target phase image is established more accurately. Trajectory fitting ensures the estimated trajectory does not fluctuate violently. We evaluated our method by using the public DIR-lab, POPI-model, CREATIS and COPDgene lung datasets. In the experimental results, the proposed method achieved satisfied accuracy for image registration. Our method also preserved the topology of the deformation fields well for image registration with large deformation.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Algoritmos , Humanos , Pulmão/fisiologia , Movimento/fisiologia , Respiração
2.
Med Phys ; 42(10): 5616-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26429236

RESUMO

PURPOSE: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. METHODS: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. RESULTS: The performances of the authors' method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors' method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors' method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors' method ranks 24 of 39. According to the index of the maximum shear stretch, the authors' method is also efficient to describe the discontinuous motion at the lung boundaries. CONCLUSIONS: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors' method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.


Assuntos
Algoritmos , Pulmão/fisiologia , Modelos Biológicos , Movimento , Tomografia Computadorizada Quadridimensional , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Radioterapia Guiada por Imagem , Respiração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA