Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 389, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563545

RESUMO

BACKGROUND: Anthracnose is a fungal disease caused by Colletotrichum spp. that has a significant impact on worldwide pepper production. Colletotrichum scovillei is the most common pathogenic anthracnose-causing species in the Republic of Korea. RESULTS: The resistances of 197 pepper (Capsicum chinense) accessions deposited in Korea's National Agrobiodiversity Center were evaluated for their response against the virulent pathogens Colletotrichum acutatum isolate 'KSCa-1' and C. scovillei isolate 'Hana') in the field and in vitro methods for three consecutive years (2018 to 2020). The severity of the disease was recorded and compared between inoculation methods. Six phenotypically resistant pepper accessions were selected based on three years of disease data. All of the selected resistant pepper accessions outperformed the control resistant pepper in terms of resistance (PI 594,137). A genome-wide association study (GWAS) was carried out to identify single nucleotide polymorphisms (SNPs) associated with anthracnose resistance. An association analysis was performed using 53,518 SNPs and the disease score of the 2020 field and in vitro experiment results. Both field and in vitro experiments revealed 25 and 32 significantly associated SNPs, respectively. These SNPs were found on all chromosomes except Ch06 and Ch07 in the field experiment, whereas in the in vitro experiment they were found on all chromosomes except Ch04 and Ch11. CONCLUSION: In this study, six resistant C. chinense accessions were selected. Additionally, in this study, significantly associated SNPs were found in a gene that codes for a protein kinase receptor, such as serine/threonine-protein kinase, and other genes that are known to be involved in disease resistance. This may strengthen the role of these genes in the development of anthracnose resistance in Capsicum spp. As a result, the SNPs discovered to be strongly linked in this study can be used to identify a potential marker for selecting pepper material resistant to anthracnose, which will assist in the development of resistant varieties.


Assuntos
Capsicum , Colletotrichum , Estudo de Associação Genômica Ampla , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Plants (Basel) ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339537

RESUMO

This study investigated carotenoid content and fruit color variation in 306 pepper accessions from diverse Capsicum species. Red-fruited accessions were predominant (245 accessions), followed by orange (35) and yellow (20). Carotenoid profiles varied significantly across accessions, with capsanthin showing the highest mean concentration (239.12 µg/g), followed by ß-cryptoxanthin (63.70 µg/g) and zeaxanthin (63.25 µg/g). Total carotenoid content ranged from 7.09 to 2566.67 µg/g, emphasizing the diversity within the dataset. Correlation analysis revealed complex relationships between carotenoids, with strong positive correlations observed between total carotenoids and capsanthin (r = 0.94 ***), ß-cryptoxanthin (r = 0.87 ***), and zeaxanthin (r = 0.84 ***). Principal component analysis (PCA) identified two distinct carotenoid groups, accounting for 67.6% of the total variance. A genome-wide association study (GWAS) identified 91 significant single nucleotide polymorphisms (SNPs) associated with fruit color (15 SNPs) and carotenoid content (76 SNPs). These SNPs were distributed across all chromosomes, with varying numbers on each. Among individual carotenoids, α-carotene was associated with 28 SNPs, while other carotenoids showed different numbers of associated SNPs. Candidate genes encoding diverse proteins were identified near significant SNPs, potentially contributing to fruit color variation and carotenoid accumulation. These included pentatricopeptide repeat-containing proteins, mitochondrial proton/calcium exchangers, E3 ubiquitin-protein ligase SINAT2, histone-lysine N-methyltransferase, sucrose synthase, and various enzymes involved in metabolic processes. Seven SNPs exhibited pleiotropic effects on multiple carotenoids, particularly ß-cryptoxanthin and capsanthin. The findings of this study provide insights into the genetic architecture of carotenoid biosynthesis and fruit color in peppers, offering valuable resources for targeted breeding programs aimed at enhancing the nutritional and sensory attributes of pepper varieties.

3.
Antioxidants (Basel) ; 13(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39334793

RESUMO

Studying the effects of genetic and environmental factors on plant biochemical components helps in selecting the best varieties for the food industry and breeding programs. This study analyzed the nutritional qualities, secondary metabolites, and antioxidant activities of 14 field-grown yardlong beans accessions and how they are affected by differences in pod and seed colors. The analyzed parameters varied significantly among the yardlong bean accessions, with variances ranging from 1.36% in total unsaturated fatty acid content to 51.01% in DPPH• scavenging activity. Accessions YLB4, YLB7, and YLB14 performed the best, showing antioxidant indices of 100.00, 70.10, and 67.88%, respectively. Among these, YLB14 showed a characteristic property, having the highest levels of vitamin C (2.62 mg/g) and omega-6 to omega-3 ratio (2.67). It also had the second highest dietary fiber (21.45%), stearic acid (4.44%), and linoleic acid (40.39%) contents, as well as the lowest thrombogenicity index (0.38). Although cluster and principal component analyses did not clearly separate the yardlong beans based on pod or seed color, analysis of variance revealed that these factors and their interaction had significant effects on total phenol, DPPH• scavenging activity, ABTS•+ scavenging activity, and reducing power. In contrast, the nutritional parameters, except for dietary fiber, were not significantly affected by pod and seed color variations. Therefore, consuming yardlong beans of different pod and seed colors may not affect the overall nutrient intake. In general, this study identified yardlong beans with green pods and black seeds as good sources of antioxidants. Accordingly, further metabolomics and genomics studies are suggested to thoroughly explore their characteristics.

4.
Antioxidants (Basel) ; 13(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38671911

RESUMO

This study analyzed the nutrient levels, secondary metabolite contents, and antioxidant activities of 35 yardlong bean accessions from China, Korea, Myanmar, and Thailand, along with their key agronomic traits. Significant variations were found in all the parameters analyzed (p < 0.05). The crude fiber (CFC), dietary fiber (DFC), total protein, and total fat contents varied from 4.10 to 6.51%, 16.71 to 23.49%, 22.45 to 28.11%, and 0.59 to 2.00%, respectively. HPLC analysis showed more than a 10-fold difference in vitamin C level (0.23 to 3.04 mg/g), whereas GC-FID analysis revealed the dominance of palmitic acid and linoleic acid. All accessions had high levels of total unsaturated fatty acids, which could help in preventing cardiovascular disease. Furthermore, total phenolic, tannin, and saponin contents ranged between 3.78 and 9.13 mg GAE/g, 31.20 and 778.34 mg CE/g, and 25.79 and 82.55 mg DE/g, respectively. Antioxidant activities like DPPH• scavenging, ABTS•+ scavenging, and reducing power (RP) ranged between 1.63 and 9.95 mg AAE/g, 6.51 and 21.21 mg TE/g, and 2.02, and 15.58 mg AAE/g, respectively. Days to flowering, total fat, palmitic acid, oleic acid, and TPC were significantly influenced by origin and genotype differences, while seeds per pod, one-hundred seeds weight, CFC, DFC, vitamin C, RP, and TSC were not affected by these factors. Multivariate analysis categorized the accessions into four clusters showing significant variations in most of the analyzed parameters. Correlation analysis also revealed significant relationships between several noteworthy parameters. Overall, this comprehensive analysis of biochemical factors revealed diversity among the different yardlong bean varieties. These findings could have practical applications in industries, breeding programs, and conservation efforts.

5.
Food Chem X ; 23: 101780, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39286044

RESUMO

This study explored how genotype, seed color, and seed weight affect major biochemical components in 95 faba bean accessions. Genotype variation significantly affected convicine, total tannin (TTC), total saponin, and total phenol (TPC) contents. Seed color and weight variations affected several parameters, with their interaction significantly affecting convicine, total vicine-convicine content (TVC), TTC, total polyunsaturated fatty acid (PUFA), and antioxidant activities. Genotype interaction with seed weight and seed color also significantly affected convicine, TVC, TPC, oleic acid, linoleic acid, PUFA, and ferric-reducing antioxidant power. Vicine, dietary fiber, total fat, crude protein, palmitic acid, and stearic acid contents remain unaffected by these factors. Multivariate analysis showed that brown and small beans had distinctive characteristics. Overall, this study demonstrated the connection between biochemical components, genotype, and seed traits in faba beans. Therefore, these factors should be considered when choosing faba bean genotypes for use in the food industry and breeding programs.

6.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256723

RESUMO

This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), ß-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest ß-glucan content. Two accessions had ß-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.

7.
Front Nutr ; 10: 1238729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637957

RESUMO

Introduction: Sorghum, long regarded as one of the most underutilized crops, has received attention in recent years. As a result, conducting multidisciplinary studies on the potential and health benefits of sorghum resources is vital if they are to be fully exploited. In this study, the nutritional contents, functional metabolites, and antioxidant capacities of 23 sorghum breeding lines and three popular cultivars were assessed. Materials and method: All of the sorghum genotypes were grown under the same conditions, and mature seeds were hand-harvested. The metabolite contents and antioxidant capacities of sorghum seeds were assessed using standard protocols. Fatty acids were quantified using a gas chromatography-flame ionization detector, whereas flavonoids and 3-deoxyanthocyanidins were analyzed using a liquid chromatography-tandem mass spectrometry method. The data were analyzed using both univariate and multivariate statistical approaches. Results and discussion: Total protein (9.05-14.61%), total fat (2.99-6.91%), crude fiber (0.71-2.62%), dietary fiber (6.72-16.27%), total phenolic (0.92-10.38 mg GAE/g), and total tannin (0.68-434.22 mg CE/g) contents varied significantly across the sorghum genotypes (p < 0.05). Antioxidant capacity, measured using three assays, also differed significantly. Five fatty acids, including palmitic, stearic, oleic, linoleic, and linolenic acids, were found in all the sorghum genotypes with statistically different contents (p < 0.05). Furthermore, the majority of the sorghum genotypes contained four 3-deoxyanthocyanidins, including luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin, as well as two dominant flavonoids, luteolin and apigenin. Compared to the cultivars, some breeding lines had significantly high levels of metabolites and antioxidant activities. On the other hand, statistical analysis showed that total tannin, total phenolic, and antioxidant capacities varied significantly across white, yellow, and orange genotypes. Principal component analysis was used to differentiate the sorghum genotypes based on seed color and antioxidant index levels. Pearson's correlation analysis revealed strong links between biosynthetically related metabolites and those with synergistic antioxidant properties. Conclusion: This research demonstrated the diversity of the sorghum resources investigated. Those genotypes with high levels of nutritional components, functional metabolites, and antioxidant activities could be used for consumption and breeding programs.

8.
Food Res Int ; 173(Pt 2): 113390, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803729

RESUMO

Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.


Assuntos
Antioxidantes , Sorghum , Antioxidantes/análise , Sorghum/química , Luteolina , Estudos Prospectivos , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides/análise , Grão Comestível/química , Fenóis/análise , Fibras na Dieta/análise
9.
Foods ; 12(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002121

RESUMO

Legume dehulling often removes anti-nutrients while improving nutritional quality. However, the process may reduce the levels of other health-promoting metabolites. This study investigated the effect of dehulling on major nutrients, bioactive metabolites, and antioxidant activities using 22 faba bean cultivars typically grown in different parts of the world. The faba bean cultivars differed significantly in all the parameters assessed. Crude fiber (CFC), dietary fiber (DFC), crude protein, and crude fat contents were in the ranges of 5.24-10.56, 16.17-25.15, 19.83-30.90, and 0.79-1.94% in the whole seeds and 0.96-1.59, 4.14-9.50, 22.47-36.61, and 1.13-2.07% in the dehulled seeds, respectively. Moreover, fatty acids including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, bioactive metabolites including total phenol (TPC), total saponin (TSC), and total tannin (TTC) contents, and antioxidant activities including ABTS•+-scavenging activity, ferric antioxidant power (FRAP), and DPPH•-scavenging activity also showed significant variations. Dehulling significantly reduced DFC (55.09-79.30%), CFC (69.61-87.52%), and TTC (1.70-66.99%) in all the faba bean cultivars while increasing total protein content (9.31-17.69%). Dehulling also increased the total fat content (3.02-48.13%) in all the cultivars except Giant Three Seeded, a Japanese cultivar, which showed a 12.62% decrease. In contrast, dehulling exhibited varying results on fatty acids, TPC, TSC, and antioxidant activities among the faba bean cultivars. Accordingly, three cultivars: Primus from Hungary, Levens Marschbohne from Germany, and Ascott from France, exhibited simultaneous increases in nutritional levels after dehulling. Domasna-2 from Macedonia, Abawi# 1 from Peru, Seville from the United Kingdom, and Large Mazandran from Iran, on the other hand, exhibited marked reductions in nutritional levels, functional metabolites, and antioxidant activities. In general, our findings indicated that dehulling reduces crude fiber, dietary fiber, and tannin levels while increasing protein and fat contents in faba beans. However, fatty acids, phenolic content, and antioxidant activity may not be equally affected by dehulling and, therefore, specific genotypes should be inspected.

10.
Plants (Basel) ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140482

RESUMO

Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.

11.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740028

RESUMO

In this study, adzuki bean cultivars including Arari, Chilbopat, Geomguseul, and Hongeon were recently cultivated, and the concentrations of seven individual anthocyanins were determined in their seed coats for the first time. Moreover, the variations of total saponin content (TSC), total phenolic content (TPC), 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) between defatted and undefatted extracts of whole seeds, seed coats, and dehulled seeds of each were analyzed. The anthocyanins were detected only in the black seed-coated cultivars and delphinidin-3-O-glucoside was dominant in both Geomguseul (12.46 mg/g) and Chilbopat (10.88 mg/g) followed by delphinidin-3-O-galactoside. TSC and TPC were in the ranges of 16.20−944.78 mg DE/g and 0.80−57.35 mg GAE/g, respectively, and each decreased in the order of seed coats > whole seeds > dehulled seeds regardless of extract type. The antioxidant activities also showed similar patterns of variation. Geomguseul seed coats outweighed the remaining cultivars in terms of TPC and FRAP activity (p < 0.05). Generally, significant variations of metabolite contents and antioxidant activities were observed between cultivars and across their seed parts (p < 0.05). Thence, black seed-coated adzuki beans could be excellent sources of anthocyanins and antioxidants.

12.
Food Chem ; 381: 132249, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114623

RESUMO

In this study, 54 soybean germplasms of different seed coat colors originated from America, China, Japan, and Korea were cultivated in Korea and analyzed for the contents of total oil, total protein, total phenolic, five fatty acids, and five isoflavones, and antioxidant activities using three assays. The soybeans showed significant variations (p < 0.05) of metabolite contents and antioxidant activities. Origin and seed coat color exhibited a slight or insignificant effect on total protein and total oil contents. In contrast, origin and seed coat color significantly affected the concentration of individual and total isoflavones, and total phenolics, with few exceptions. Whereas fatty acids were significantly affected by origin, seed coat color provided better information regarding the variations in antioxidant capacities. Together, multivariate and correlation analyses revealed important associations between biosynthetically-related metabolites. In general, origin and seed coat color differently influenced the concentration of different classes of metabolites and antioxidant activities.


Assuntos
Glycine max , Isoflavonas , Antioxidantes/análise , Isoflavonas/análise , Fenóis/análise , Sementes/química , Glycine max/metabolismo
13.
Plants (Basel) ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685921

RESUMO

Proso millet (Panicum miliaceum L.) or broomcorn millet is among the most important food crops to be domesticated by humans; it is widely distributed in America, Europe, and Asia. In this study, we genotyped 578 accessions of P. miliaceum using 37 single-sequence repeat (SSR) markers, to study the genetic diversity and population structure of each accession. We also investigated total phenolic content (TPC) and superoxide dismutase (SOD) activity and performed association analysis using SSR markers. The results showed that genetic diversity and genetic distance were related to geographic location and the fixation index (Fst). Population structure analysis divided the population into three subpopulations. Based on 3 subpopulations, the population is divided into six clusters in consideration of geographical distribution characteristics and agronomic traits. Based on the genetic diversity, population structure, pairwise Fst, and gene flow analyses, we described the topological structure of the six proso millet subpopulations, and the geographic distribution and migration of each cluster. Comparison of the published cluster (cluster 1) with unique germplasms in Japan and South Korea suggested Turkey as a possible secondary center of origin and domestication (cluster 3) for the cluster. We also discovered a cluster domesticated in Nepal (cluster 6) that is adapted to high-latitude and high-altitude cultivation conditions. Differences in phenotypic characteristics, such as TPC, were observed between the clusters. The association analysis showed that TPC was associated with SSR-31, which explained 7.1% of the total variance, respectively. The development of markers associated with TPC and SOD will provide breeders with new tools to improve the quality of proso millet through marker-assisted selection.

14.
Cryo Letters ; 31(6): 473-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21410016

RESUMO

An efficient protocol for the cryopreservation of madder (Rubia akane Nakai) hairy root cultures was developed using droplet-vitrification and alternative loading and vitrification solutions formulated previously in our laboratory. Among eight preculture treatments tested, the highest post-cryopreservation regeneration was obtained for explants incubated in liquid half-strength MS medium with progressively increased sucrose concentration (0.3 M for 54 h, then 0.5 M for 16 h). Loading of precultured explants improved their post-cryopreservation regeneration by 50-75% compared with non-loaded control. Combining loading solution C4 (35% PVS3) and vitrification solution B5 (80% PVS3) was the most effective, while applying six PVS2-based solutions at room temperature resulted in low post-cryo regeneration. Treatment duration was optimized to 30 min for loading and to 10-20 min for vitrification solution. Apices of primary and secondary hairy roots showed similar post-cryo regeneration (88 and 95%, respectively), which was significantly higher than regeneration of root sections without apices (65%). Droplet-vitrification produced higher post-cryo regeneration than 'classical' vitrification in cryovials. Our results suggest that droplet-vitrification using alternative loading and vitrification solutions is an efficient method for cryopreservation of R. akane hairy root cultures.


Assuntos
Criopreservação , Crioprotetores , Rubia , Biotecnologia , Criopreservação/métodos , Crioprotetores/química , Técnicas de Cultura , Dessecação , Raízes de Plantas , Sacarose , Vitrificação
15.
Plants (Basel) ; 9(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824928

RESUMO

Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world, with Asia as a continent contributing the most. As part of the effort to diversify watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationships between each. Diverse characteristics were observed among many of the traits, but most of the genetic resources (>90%) were either red or pink-fleshed. Korean originated fruits contained intermediate levels of soluble solid content (SSC) while the USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated fruits had generally the highest levels of soluble solids. The citrulline and arginine contents determined using the High Performance Liquid Chromatography (HPLC) method ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using the Citrulline Assay Kit ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC, whereas red- and pink-colored flesh samples had less citrulline compared to yellow and orange.

17.
Mol Ecol Resour ; 14(1): 69-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23875976

RESUMO

A genetic evaluation of safflower germplasm collections derived from different geographical regions and countries will provide useful information for sustainable conservation and the utilization of genetic diversity. However, the molecular marker information is limited for evaluation of genetic diversity of safflower germplasm. In this study, we acquired 509 putative genomic SSR markers for sufficient genome coverage using next-generation sequencing methods and characterized thirty polymorphic SSRs in safflower collection composed of 100 diverse accessions. The average allele number and expected heterozygosity were 2.8 and 0.386, respectively. Analysis of population structure and phylogeny based on thirty SSR profiles revealed genetic admixture between geographical regions contrary to genetic clustering. However, the accessions from Korea were genetically conserved in distinctive groups in contrast to other safflower gene pool. In conclusion, these new genomic SSRs will facilitate valuable studies to clarify genetic relationships as well as conduct population structure analyses, genetic map construction and association analysis for safflower.


Assuntos
Carthamus tinctorius/classificação , Carthamus tinctorius/genética , Variação Genética , Repetições de Microssatélites , Análise por Conglomerados , DNA de Plantas/química , DNA de Plantas/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Coreia (Geográfico) , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
Protoplasma ; 251(3): 649-59, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24150426

RESUMO

In this work, we studied the impact of the successive steps of the droplet-vitrification protocol technique employed for cryopreservation of Rubia akane hairy roots on the features of cortical, pericycle and endoderm cells of apical and central root segments, using histology techniques and combining qualitative and quantitative observations. In apical segments, plasmolysis (22-71 %, depending on cell type) was observed only after the loading treatment and did not increase after the following steps of the protocol. By contrast, in central segments, plasmolysis (39-45 %) was already observed after the sucrose pretreatment; it increased to 54-68 %, depending on cell type, after the loading treatment, but no further changes were noted after treatment with the vitrification solution. After liquid nitrogen exposure and unloading treatment, deplasmolysis was more rapid in apical segments, with cortical and pericycle cells having retrieved their original features. In central segments, only cortical cells had retrieved their original features and endoderm and pericycle cells were still highly plasmolysed. Nuclei were more strongly impacted by the cryopreservation protocol in central segments, where they displayed a highly condensed nucleoplasm from the loading treatment onwards and had not retrieved their original aspect after the unloading treatment. By contrast, nuclei had a much less condensed nucleoplasm in cells of apical segments, and they had retrieved their original aspect after the unloading treatment.


Assuntos
Criopreservação , Rubia , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA