Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(8): 2046-2049, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058638

RESUMO

It has been recently reported that ultraviolet harmonic vortices can be produced when a high-power circular-polarized laser pulse travels through a micro-scale waveguide. However, the harmonic generation quenches typically after a few tens of microns of propagation, due to the buildup of electrostatic potential that suppresses the amplitude of the surface wave. Here we propose to use a hollow-cone channel to overcome this obstacle. When traveling in a cone target, the laser intensity at the entrance is relatively low to avoid extracting too many electrons, while the slow focusing by the cone channel subsequently counters the established electrostatic potential, allowing the surface wave to maintain a high amplitude for a much longer distance. According to three-dimensional particle-in-cell simulations, the harmonic vortices can be produced with very high efficiency >20%. The proposed scheme paves the way for the development of powerful optical vortices sources in the extreme ultraviolet regime-an area of significant fundamental and applied physics potential.

2.
Phys Rev Lett ; 126(13): 134801, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861098

RESUMO

When a high power laser beam irradiates a small aperture on a solid foil target, the strong laser field drives surface plasma oscillation at the periphery of this aperture, which acts as a "relativistic oscillating window." The diffracted light that travels though such an aperture contains high-harmonics of the fundamental laser frequency. When the driving laser beam is circularly polarized, the high-harmonic generation (HHG) process facilitates a conversion of the spin angular momentum of the fundamental light into the intrinsic orbital angular momentum of the harmonics. By means of theoretical modeling and fully 3D particle-in-cell simulations, it is shown the harmonic beams of order n are optical vortices with topological charge |l|=n-1, and a power-law spectrum I_{n}∝n^{-3.5} is produced for sufficiently intense laser beams, where I_{n} is the intensity of the nth harmonic. This work opens up a new realm of possibilities for producing intense extreme ultraviolet vortices, and diffraction-based HHG studies at relativistic intensities.

3.
Phys Rev Lett ; 123(9): 094801, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524442

RESUMO

We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-power laser irradiating a microplasma waveguide (MPW). When the laser pulse enters the MPW, high-charge electron bunches are produced and accelerated to ∼100 MeV by the transverse magnetic modes. A substantial part of the electron energy is transferred to THz emission through coherent diffraction radiation as the electron bunches exit the MPW. We demonstrate this process with three-dimensional particle-in-cell simulations. The frequency of the radiation is determined by the incident laser duration, and the radiated energy is found to be strongly correlated to the charge of the electron bunches, which can be controlled by the laser intensity and microengineering of the MPW target. Our simulations indicate that 100 mJ level relativistic-intense THz pulses with tunable frequency can be generated at existing laser facilities, and the overall efficiency reaches 1%.

4.
Phys Rev Lett ; 116(11): 115001, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035304

RESUMO

Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities have become available. These pulses allow for interaction with microstructured solid-density plasma without destroying the structure by parasitic prepulses. This opens a new realm of possibilities for laser interaction with micro- and nanoscale photonic materials at relativistic intensities. Here we demonstrate, for the first time, that when coupled with a readily available 1.8 J laser, a microplasma waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls and form a dense helical bunch inside the channel. These electrons are efficiently accelerated and wiggled by the waveguide modes in the MPW, which results in a bright, well-collimated emission of hard x rays in the range of 1∼100 keV.

5.
Nat Commun ; 9(1): 1601, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686280

RESUMO

Magnetic reconnection (MR) is a fundamental plasma process associated with conversion of the magnetic field energy into kinetic plasma energy, which is invoked to explain many non-thermal signatures in astrophysical events. Here we demonstrate that ultrafast relativistic MR in a magnetically dominated regime can be triggered by a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab. Three-dimensional (3D) particle-in-cell (PIC) simulations show that when the electrons beams excited on both sides of the slab approach the end of the plasma, MR occurs and it gives rise to efficient energy dissipation that leads to the emission of relativistic electron jets with cut-off energy ~12 MeV. The proposed scenario allows for accessing an unprecedented regime of MR in the laboratory, and may lead to experimental studies that can provide insight into open questions such as reconnection rate and particle acceleration in relativistic MR.

6.
Sci Rep ; 6: 28147, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320197

RESUMO

Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

7.
Sci Rep ; 4: 4171, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24566831

RESUMO

Nowadays, human's understanding of the fundamental physics is somehow limited by the energy that our high energy accelerators can afford. Up to 4 TeV protons are realized in the Large Hadron Collider (LHC). Leptons, such as electrons and positrons, however gained energies of about 100 GeV or less. Multi-TeV lepton accelerators are still lacking due to the relatively low acceleration gradient of conventional methods, which may induce unbearable cost. On the other hand, plasmas have shown extraordinary potential in accelerating electrons and ions, providing orders of magnitude higher acceleration fields of 10-100 GV/m. In such context, we propose a plasma-based high-energy lepton accelerator, in which a weakly focusing plasma structure is formed near the beam axis. The structure preserves the emittance of the accelerated beam and produces low radiation losses. Moreover, the structure allows for a considerable decrease of the witness energy spread at the driver depletion stage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA