Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.071
Filtrar
1.
Nat Immunol ; 24(3): 452-462, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823405

RESUMO

Exposure of lipopolysaccharide triggers macrophage pro-inflammatory polarization accompanied by metabolic reprogramming, characterized by elevated aerobic glycolysis and a broken tricarboxylic acid cycle. However, in contrast to lipopolysaccharide, CD40 signal is able to drive pro-inflammatory and anti-tumorigenic polarization by some yet undefined metabolic programming. Here we show that CD40 activation triggers fatty acid oxidation (FAO) and glutamine metabolism to promote ATP citrate lyase-dependent epigenetic reprogramming of pro-inflammatory genes and anti-tumorigenic phenotypes in macrophages. Mechanistically, glutamine usage reinforces FAO-induced pro-inflammatory and anti-tumorigenic activation by fine-tuning the NAD+/NADH ratio via glutamine-to-lactate conversion. Genetic ablation of important metabolic enzymes involved in CD40-mediated metabolic reprogramming abolishes agonistic anti-CD40-induced antitumor responses and reeducation of tumor-associated macrophages. Together these data show that metabolic reprogramming, which includes FAO and glutamine metabolism, controls the activation of pro-inflammatory and anti-tumorigenic polarization, and highlight a therapeutic potential of metabolic preconditioning of tumor-associated macrophages before agonistic anti-CD40 treatments.


Assuntos
Ácidos Graxos , Glutamina , Glutamina/metabolismo , Ácidos Graxos/metabolismo , Lipopolissacarídeos/metabolismo , Glicólise , Macrófagos/metabolismo , Ativação de Macrófagos
2.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031003

RESUMO

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Proteogenômica/métodos , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Genômica/métodos , Glicólise , Humanos , Instabilidade de Microssatélites , Mutação , Fosforilação , Estudos Prospectivos , Proteômica/métodos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
4.
Nature ; 617(7960): 369-376, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100909

RESUMO

Communication between neurons and glia has an important role in establishing and maintaining higher-order brain function1. Astrocytes are endowed with complex morphologies, placing their peripheral processes in close proximity to neuronal synapses and directly contributing to their regulation of brain circuits2-4. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation5-7; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unclear. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABAB receptor (GABABR) and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABABR in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together, our studies identify input from inhibitory neurons and astrocytic GABABR as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.


Assuntos
Astrócitos , Forma Celular , Inibição Neural , Neurônios , Receptores de GABA-B , Astrócitos/citologia , Astrócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Receptores de GABA-B/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição NFI/metabolismo , Regulação da Expressão Gênica
5.
Nature ; 619(7971): 844-850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380778

RESUMO

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.


Assuntos
Neoplasias Encefálicas , Carcinogênese , Glioma , Neurônios , Microambiente Tumoral , Humanos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Glioma/patologia , Glioma/fisiopatologia , Neurônios/patologia , Proliferação de Células , Sinapses , Progressão da Doença , Animais , Camundongos , Axônios , Corpo Caloso/patologia , Vias Neurais
6.
Mol Cell ; 77(2): 213-227.e5, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31735641

RESUMO

Macrophages form a major cell population in the tumor microenvironment. They can be activated and polarized into tumor-associated macrophages (TAM) by the tumor-derived soluble molecules to promote tumor progression and metastasis. Here, we used comparative metabolomics coupled with biochemical and animal studies to show that cancer cells release succinate into their microenvironment and activate succinate receptor (SUCNR1) signaling to polarize macrophages into TAM. Furthermore, the results from in vitro and in vivo studies revealed that succinate promotes not only cancer cell migration and invasion but also cancer metastasis. These effects are mediated by SUCNR1-triggered PI3K-hypoxia-inducible factor 1α (HIF-1α) axis. Compared with healthy subjects and tumor-free lung tissues, serum succinate levels and lung cancer SUCNR1 expression were elevated in lung cancer patients, suggesting an important clinical relevance. Collectively, our findings indicate that the secreted tumor-derived succinate belongs to a novel class of cancer progression factors, controlling TAM polarization and promoting tumorigenic signaling.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Metástase Neoplásica/patologia , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células HT29 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Células PC-3 , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
7.
Semin Cell Dev Biol ; 156: 35-43, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331841

RESUMO

One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.


Assuntos
Neoplasias , Poliploidia , Humanos , Neoplasias/genética , Apoptose/genética , Segregação de Cromossomos , Instabilidade Genômica
8.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861793

RESUMO

Many organs of Drosophila show stereotypical left-right (LR) asymmetry; however, the underlying mechanisms remain elusive. Here, we have identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor No (Drn), as a factor required for LR asymmetry in the embryonic anterior gut. We found that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to those with depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. Absence of Drn resulted in specific accumulation of Domeless (Dome), the receptor for ligands in the JAK/STAT signaling pathway, in intracellular compartments, including ubiquitylated cargos. Dome colocalized with Drn in wild-type Drosophila. These results suggest that Drn is required for the endocytic trafficking of Dome, which is a crucial step for activation of JAK/STAT signaling and the subsequent degradation of Dome. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR asymmetric development may be conserved in various organisms.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Endocitose/genética , Janus Quinases/genética , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
9.
Nature ; 578(7793): 166-171, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996845

RESUMO

Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.


Assuntos
Neoplasias Encefálicas/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Glioblastoma/enzimologia , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Glioblastoma/patologia , Glipicanas/metabolismo , Camundongos
10.
PLoS Genet ; 19(8): e1010869, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556491

RESUMO

Metabolic pathways are known to sense the environmental stimuli and result in physiological adjustments. The responding processes need to be tightly controlled. Here, we show that upon encountering P. aeruginosa, C. elegans upregulate the transcription factor ets-4, but this upregulation is attenuated by the ribonuclease, rege-1. As such, mutants with defective REGE-1 ribonuclease activity undergo ets-4-dependent early death upon challenge with P. aeruginosa. Furthermore, mRNA-seq analysis revealed associated global changes in two key metabolic pathways, the IIS (insulin/IGF signaling) and TOR (target of rapamycin) kinase signaling pathways. In particular, failure to degrade ets-4 mRNA in activity-defective rege-1 mutants resulted in upregulation of class II longevity genes, which are suppressed during longevity, and activation of TORC1 kinase signaling pathway. Genetic inhibition of either pathway way was sufficient to abolish the poor survival phenotype in rege-1 worms. Further analysis of ETS-4 ChIP data from ENCODE and characterization of one upregulated class II gene, ins-7, support that the Class II genes are activated by ETS-4. Interestingly, deleting an upregulated Class II gene, acox-1.5, a peroxisome ß-oxidation enzyme, largely rescues the fat lost phenotype and survival difference between rege-1 mutants and wild-types. Thus, rege-1 appears to be crucial for animal survival due to its tight regulation of physiological responses to environmental stimuli. This function is reminiscent of its mammalian ortholog, Regnase-1, which modulates the intestinal mTORC1 signaling pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Insulina/genética , Insulina/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
11.
Proc Natl Acad Sci U S A ; 120(24): e2300189120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37285393

RESUMO

Using millions of observations compiled from the public administrative data of Taiwan, we find a surprising gender inequity in terms of real estate: Men own more land than women, and the annual rate of return (ROR) of men's land outperform women's by almost 1% per year. The latter finding of gender-based ROR difference is in sharp contrast to prior evidence that women outperform men in security investment, and also suggests a quantity-and-quality double jeopardy in female land ownership which, given the heavy weight of real estate in individual wealth, has important implications for wealth inequality among men and women. Our statistical analyses suggest that such a gender-based difference in land ROR cannot be attributed to individual-level factors such as liquidity preferences, risk attitudes, investment experience, and behavioral biases, as described in the literature. Rather, we hypothesize parental gender bias-a phenomenon that is still prevalent today-to be the key macrolevel factor. To test our hypothesis, we partition our observations into two groups: an experimental group in which parents can exercise gender discretion, and a control group in which parents cannot exercise such discretion. Our empirical evidence shows that the gender difference with respect to land ROR only exists in the experimental group. For many societies with long-lasting patriarchal traditions, our analysis provides a perspective to help explain gender differences in wealth distribution and social mobility.


Assuntos
Propriedade , Sexismo , Humanos , Feminino , Masculino , Fatores Sexuais , Homens , Investimentos em Saúde
12.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916488

RESUMO

Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.


Assuntos
Encéfalo , Tentilhões , Redes Reguladoras de Genes , Comportamento de Nidação , Animais , Tentilhões/genética , Tentilhões/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Feminino , Masculino , Comportamento Social , Transcriptoma
13.
J Virol ; : e0202023, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884472

RESUMO

Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.

14.
Brain ; 147(4): 1497-1510, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37988283

RESUMO

Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/patologia , Fosforilação , Encéfalo/patologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Biomarcadores/metabolismo
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615243

RESUMO

OBJECTIVE: To investigate the alterations in cortical-cerebellar circuits and assess their diagnostic potential in preschool children with autism spectrum disorder using multimodal magnetic resonance imaging. METHODS: We utilized diffusion basis spectrum imaging approaches, namely DBSI_20 and DBSI_combine, alongside 3D structural imaging to examine 31 autism spectrum disorder diagnosed patients and 30 healthy controls. The participants' brains were segmented into 120 anatomical regions for this analysis, and a multimodal strategy was adopted to assess the brain networks using a multi-kernel support vector machine for classification. RESULTS: The results revealed consensus connections in the cortical-cerebellar and subcortical-cerebellar circuits, notably in the thalamus and basal ganglia. These connections were predominantly positive in the frontoparietal and subcortical pathways, whereas negative consensus connections were mainly observed in frontotemporal and subcortical pathways. Among the models tested, DBSI_20 showed the highest accuracy rate of 86.88%. In addition, further analysis indicated that combining the 3 models resulted in the most effective performance. CONCLUSION: The connectivity network analysis of the multimodal brain data identified significant abnormalities in the cortical-cerebellar circuits in autism spectrum disorder patients. The DBSI_20 model not only provided the highest accuracy but also demonstrated efficiency, suggesting its potential for clinical application in autism spectrum disorder diagnosis.


Assuntos
Transtorno do Espectro Autista , Humanos , Pré-Escolar , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Encéfalo
16.
Genomics ; 116(3): 110845, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614287

RESUMO

Rubus, the largest genus in Rosaceae, contains over 1400 species that distributed in multiple habitats across the world, with high species diversity in the temperate regions of Northern Hemisphere. Multiple Rubus species are cultivated for their valuable fruits. However, the intrageneric classification and phylogenetic relationships are still poorly understood. In this study, we sequenced, assembled, and characterized 17 plastomes of Rubus, and conducted comparative genomics integrating with 47 previously issued plastomes of this genus. The 64 plastomes of Rubus exhibited typical quadripartite structure with sizes ranging from 155,144 to 156,700 bp, and contained 132 genes including 87 protein-coding genes, 37 tRNA genes and eight rRNA genes. All plastomes are conservative in the gene order, the frequency of different types of long repeats and simple sequence repeats (SSRs), the codon usage, and the selection pressure of protein-coding genes. However, there are also some differences in the Rubus plastomes, including slight contraction and expansion of the IRs, a variation in the numbers of SSRs and long repeats, and some genes in certain clades undergoing intensified or relaxed purifying selection. Phylogenetic analysis based on whole plastomes showed that the monophyly of Rubus was strongly supported and resolved it into six clades corresponding to six subgenera. Moreover, we identified 12 highly variable regions that could be potential molecular markers for phylogenetic, population genetic, and barcoding studies. Overall, our study provided insight into plastomic structure and sequence diversification of Rubus, which could be beneficial for future studies on identification, evolution, and phylogeny in this genus.


Assuntos
Genômica , Filogenia , Rubus , Rubus/genética , Genoma de Cloroplastos , Cloroplastos/genética , Repetições de Microssatélites , Evolução Molecular , RNA de Transferência/genética , Uso do Códon
17.
J Allergy Clin Immunol ; 154(1): 195-208.e8, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38479630

RESUMO

BACKGROUND: X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS: To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS: A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS: Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia , Linfócitos B , Edição de Genes , Doenças Genéticas Ligadas ao Cromossomo X , Células-Tronco Hematopoéticas , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Agamaglobulinemia/imunologia , Animais , Tirosina Quinase da Agamaglobulinemia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Humanos , Linfócitos B/imunologia , Camundongos , Masculino , Transplante de Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Sistemas CRISPR-Cas
18.
J Proteome Res ; 23(1): 386-396, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113368

RESUMO

Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Proteoma/genética , Proteoma/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral
19.
Circulation ; 148(6): 459-472, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37435755

RESUMO

BACKGROUND: Gut microbiota have been implicated in atherosclerotic disease, but their relation with subclinical coronary atherosclerosis is unclear. This study aimed to identify associations between the gut microbiome and computed tomography-based measures of coronary atherosclerosis and to explore relevant clinical correlates. METHODS: We conducted a cross-sectional study of 8973 participants (50 to 65 years of age) without overt atherosclerotic disease from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study). Coronary atherosclerosis was measured using coronary artery calcium score and coronary computed tomography angiography. Gut microbiota species abundance and functional potential were assessed with shotgun metagenomics sequencing of fecal samples, and associations with coronary atherosclerosis were evaluated with multivariable regression models adjusted for cardiovascular risk factors. Associated species were evaluated for association with inflammatory markers, metabolites, and corresponding species in saliva. RESULTS: The mean age of the study sample was 57.4 years, and 53.7% were female. Coronary artery calcification was detected in 40.3%, and 5.4% had at least 1 stenosis with >50% occlusion. Sixty-four species were associated with coronary artery calcium score independent of cardiovascular risk factors, with the strongest associations observed for Streptococcus anginosus and Streptococcus oralis subsp oralis (P<1×10-5). Associations were largely similar across coronary computed tomography angiography-based measurements. Out of the 64 species, 19 species, including streptococci and other species commonly found in the oral cavity, were associated with high-sensitivity C-reactive protein plasma concentrations, and 16 with neutrophil counts. Gut microbial species that are commonly found in the oral cavity were negatively associated with plasma indole propionate and positively associated with plasma secondary bile acids and imidazole propionate. Five species, including 3 streptococci, correlated with the same species in saliva and were associated with worse dental health in the Malmö Offspring Dental Study. Microbial functional potential of dissimilatory nitrate reduction, anaerobic fatty acid ß-oxidation, and amino acid degradation were associated with coronary artery calcium score. CONCLUSIONS: This study provides evidence of an association of a gut microbiota composition characterized by increased abundance of Streptococcus spp and other species commonly found in the oral cavity with coronary atherosclerosis and systemic inflammation markers. Further longitudinal and experimental studies are warranted to explore the potential implications of a bacterial component in atherogenesis.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Estudos Transversais , Cálcio , Aterosclerose/epidemiologia , Streptococcus
20.
BMC Genomics ; 25(1): 600, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877417

RESUMO

BACKGROUND: Splicing variants are a major class of pathogenic mutations, with their severity equivalent to nonsense mutations. However, redundant and degenerate splicing signals hinder functional assessments of sequence variations within introns, particularly at branch sites. We have established a massively parallel splicing assay to assess the impact on splicing of 11,191 disease-relevant variants. Based on the experimental results, we then applied regression-based methods to identify factors determining splicing decisions and their respective weights. RESULTS: Our statistical modeling is highly sensitive, accurately annotating the splicing defects of near-exon intronic variants, outperforming state-of-the-art predictive tools. We have incorporated the algorithm and branchpoint information into a web-based tool, SpliceAPP, to provide an interactive application. This user-friendly website allows users to upload any genetic variants with genome coordinates (e.g., chr15 74,687,208 A G), and the tool will output predictions for splicing error scores and evaluate the impact on nearby splice sites. Additionally, users can query branch site information within the region of interest. CONCLUSIONS: In summary, SpliceAPP represents a pioneering approach to screening pathogenic intronic variants, contributing to the development of precision medicine. It also facilitates the annotation of splicing motifs. SpliceAPP is freely accessible using the link https://bc.imb.sinica.edu.tw/SpliceAPP . Source code can be downloaded at https://github.com/hsinnan75/SpliceAPP .


Assuntos
Internet , Mutação , Splicing de RNA , Software , Humanos , Algoritmos , Íntrons/genética , Sítios de Splice de RNA/genética , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA