Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906115

RESUMO

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Assuntos
Regiões 3' não Traduzidas , Estabilidade de RNA , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , Sequenciamento por Nanoporos/métodos , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina
2.
Nature ; 622(7983): 507-513, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730997

RESUMO

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Assuntos
Antineoplásicos , Técnicas de Química Sintética , Iminas , Compostos de Espiro , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Iminas/síntese química , Iminas/química , Iminas/farmacologia , Neoplasias/tratamento farmacológico , Proteômica , Ribossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia
3.
Nature ; 607(7919): 480-485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859196

RESUMO

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

4.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36642408

RESUMO

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Interações Medicamentosas
5.
Nucleic Acids Res ; 51(21): 11534-11548, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831104

RESUMO

RNA expression of a gene is determined by not only transcriptional regulation, but also post-transcriptional regulation of RNA decay. The precise regulation of RNA stability in the cell plays an important role in normal development. Dysregulation of RNA stability can lead to diseases such as cancer. Here we found tumor suppressor RNAs tended to decay fast in normal cell types when compared with other RNAs. Consistent with a negative effect of m6A modification on RNA stability, we observed preferential deposition of m6A on tumor suppressor RNAs. Moreover, abundant m6A and fast decay of tumor suppressor RNAs both tended to be further enhanced in prostate cancer cells relative to normal prostate epithelial cells. Further, knockdown of m6A methyltransferase METTL3 and reader YTHDF2 in prostate cancer cells both posed stronger effect on tumor suppressor RNAs than on other RNAs. These results indicated a strong post transcriptional expression regulatability mediated by abundant m6A modification on tumor suppressor RNAs.


Assuntos
Genes Supressores de Tumor , Neoplasias da Próstata , Estabilidade de RNA , RNA Mensageiro , Humanos , Masculino , Metiltransferases/genética , Neoplasias da Próstata/química , Neoplasias da Próstata/genética , RNA/genética , RNA Mensageiro/química
6.
Nucleic Acids Res ; 51(12): 6020-6038, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125636

RESUMO

Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.


Assuntos
Cromatina , Regulação da Expressão Gênica , Estabilidade de RNA , Cromatina/genética , Epigênese Genética , Metiltransferases/metabolismo , RNA/química
7.
J Cell Physiol ; 239(1): 180-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992208

RESUMO

Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Nicotinamida Fosforribosiltransferase , Oogênese , Animais , Metabolismo dos Lipídeos/genética , Meiose , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Polos do Fuso
8.
Anal Chem ; 96(2): 943-948, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166359

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) exhibits multiresistance to a plethora of antibiotics, therefore, accurate detection methods must be employed for timely identification to facilitate effective infection control measures. Herein, we construct a high-efficiency ratiometric electrochemiluminescent (ECL) biosensor that integrates multiple exonuclease (Exo) III-assisted cyclic amplification units for rapid detection of trace amounts of MRSA. The target bacteria selectively bind to the aptamer, triggering the release of two single-stranded DNAs. One released DNA strand initiates the opening of a hairpin probe, inducing exonuclease cleavage to generate a single strand that can form a T-shaped structure with the double strand connecting the oxidation-reduction (O-R) emitter of N-(4-aminobutyl)-N-ethylisoluminol gold (ABEI-Au). Consequently, ABEI-Au is released upon Exo III cleavage. The other strand unwinds the hairpin DNA structure on the surface of the reduction-oxidation (R-O) emitter ZIF-8@CdS, facilitating the subsequent release of a specific single strand through Exo III cleavage. This process effectively anchors the cathode-emitting material to the electrode. The Fe(III) metal-organogel (Fe-MOG) is selected as a substrate, in which the catalytic reduction of hydrogen peroxide by Fe(III) active centers accelerates the generation of reactive oxygen species and enhances signals from both ABEI-Au and ZIF-8@CdS. In this way, the two emitters cooperate to achieve bacterial detection at the single-cell level, and a good linear range is obtained in the range of 100-107 CFU/mL. Moreover, the sensor exhibited excellent performance in detecting MRSA across various authentic samples and accurately quantifying MRSA levels in serum samples, demonstrating its immense potential in addressing clinical bacterial detection challenges.


Assuntos
Técnicas Biossensoriais , Exodesoxirribonucleases , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Medições Luminescentes/métodos , Compostos Férricos , DNA/química , Ouro/química , Exonucleases , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química
9.
Biochem Biophys Res Commun ; 734: 150462, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39083979

RESUMO

The first barrier of the human body is the skin, and more serious harm may occur when skin wound healing is delayed. One of the components of enamel matrix proteins is amelogenin, which inhibits inflammation and promotes periodontal tissue regeneration. However, its role in skin wound healing and angiogenesis is inconclusive. Thus, this study aimed to assess the therapeutic effect of recombinant human amelogenin (rhAM) on mouse skin wounds and to determine its effect on angiogenesis and its underlying mechanism. rhAM was expressed in Escherichia coli and purified using the optimized acetic acid method. A skin injury mouse model was established to explore the effects of rhAM on skin wound healing. After treatment with rhAM for 7 days, the wound healing rate was calculated, and the therapeutic effect of rhAM on skin wounds was assessed using hematoxylin & eosin (HE), Masson, and CD31 immunofluorescence staining. The expression of growth and inflammatory factors in wound tissues were detected using Western Blot. In addition, the rhAM effects on the proliferation and migration of human umbilical vein endothelial cells (HUVEC) and mouse fibroblasts (NIH 3T3) were studied in vitro using the Cell Counting Kit-8, cell scratch, cytoskeleton staining, and qPCR. The rhAM effect on HUVEC angiogenesis and its potential mechanism was studied using tube formation and Western Blot. The results showed that the purity of the obtained rhAM was more than 90 % using the optimized acetic acid method, and high-dose rhAM treatment could improve wound healing rate in mice. Additionally, more blood vessels and collagen were produced in the skin wound, and the expression of angiopoietin-related protein 2 (ANGPTL2) and transforming growth factor (TGF)-ß1 was upregulated; however, that of interleukin-6 was down-regulated. We also found that rhAM promoted the proliferation and migration of HUVEC and NIH 3T3, the mRNA levels of vascular endothelial growth factor (VEGF), fibroblast growth factor, TGF-ß1 and ANGPTL2 in HUVEC cells were upregulated, and expression of VEGF and phosphorylation of the p38 mitogen-activated protein kinase were activated. Therefore, rhAM could promote skin wound healing by upregulating angiogenesis and inhibiting inflammation.

10.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35470854

RESUMO

It is tough to detect unexpected drug-drug interactions (DDIs) in poly-drug treatments because of high costs and clinical limitations. Computational approaches, such as deep learning-based approaches, are promising to screen potential DDIs among numerous drug pairs. Nevertheless, existing approaches neglect the asymmetric roles of two drugs in interaction. Such an asymmetry is crucial to poly-drug treatments since it determines drug priority in co-prescription. This paper designs a directed graph attention network (DGAT-DDI) to predict asymmetric DDIs. First, its encoder learns the embeddings of the source role, the target role and the self-roles of a drug. The source role embedding represents how a drug influences other drugs in DDIs. In contrast, the target role embedding represents how it is influenced by others. The self-role embedding encodes its chemical structure in a role-specific manner. Besides, two role-specific items, aggressiveness and impressionability, capture how the number of interaction partners of a drug affects its interaction tendency. Furthermore, the predictor of DGAT-DDI discriminates direction-specific interactions by the combination between two proximities and the above two role-specific items. The proximities measure the similarity between source/target embeddings and self-role embeddings. In the designated experiments, the comparison with state-of-the-art deep learning models demonstrates the superiority of DGAT-DDI across a direction-specific predicting task and a direction-blinded predicting task. An ablation study reveals how well each component of DGAT-DDI contributes to its ability. Moreover, a case study of finding novel DDIs confirms its practical ability, where 7 out of the top 10 candidates are validated in DrugBank.


Assuntos
Interações Medicamentosas
11.
New Phytol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166427

RESUMO

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.

12.
Hepatology ; 77(6): 1896-1910, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698894

RESUMO

BACKGROUND AND AIMS: Radiotherapy is an increasingly essential therapeutic strategy in the management of hepatocellular carcinoma (HCC). Nevertheless, resistance to radiotherapy is one of the primary obstacles to successful treatment outcomes. Hence, we aim to elucidate the mechanisms underlying radioresistance and identify reliable biotargets that would be inhibited to enhance the efficacy of radiotherapy in HCC. APPROACH AND RESULTS: From a label-free quantitative proteome screening, we identified transfer RNA (tRNA; guanine- N [7]-) methyltransferase 1 (METTL1), a key enzyme for N7-methylguanosine (m 7 G) tRNA modification, as an essential driver for HCC cells radioresistance. We reveal that METTL1 promotes DNA double-strand break (DSB) repair and renders HCC cells resistant to ionizing radiation (IR) using loss-of-function and gain-of-function assays in vitro and in vivo. Mechanistically, METTL1-mediated m 7 G tRNA modification selectively regulates the translation of DNA-dependent protein kinase catalytic subunit or DNA ligase IV with higher frequencies of m 7 G-related codons after IR treatment, thereby resulting in the enhancement of nonhomologous end-joining (NHEJ)-mediated DNA DSB repair efficiency. Clinically, high METTL1 expression in tumor tissue is significantly correlated with poor prognosis in radiotherapy-treated patients with HCC. CONCLUSIONS: Our findings show that METTL1 is a critical enhancer for HCC cell NHEJ-based DNA repair following IR therapy. These findings give insight into the role of tRNA modification in messenger RNA translation control in HCC radioresistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Reparo do DNA , Metiltransferases/genética , RNA de Transferência
13.
Opt Express ; 32(9): 14963-14977, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859159

RESUMO

The vertical profiles of aerosol or mixed-phase cloud optical properties (e.g. extinction coefficient) at 1064 nm are difficult to obtain from lidar observations. Based on the techniques of rotational Raman signal at 1058 nm described by Haarig et al. [Atmos. Meas. Tech.9, 4269 (2016)10.5194/amt-9-4269-2016], we have developed a novel rotational Raman polarization lidar at 1064 nm at Wuhan University. In this design, we optimized the central wavelength of the rotational Raman channel to 1056 nm with a bandwidth of 6 nm to increase the signal-to-noise ratio and minimize the temperature dependence of the extracted rotational Raman spectrum. And then separated elastic polarization channels (1064 nm Parallel, P and 1064 nm Cross, S) into near range (low 1064 nm P and 1064 nm S) and far range detection channels (high 1064 nm P and 1064 nm S) to extend the dynamic range of lidar observation. Silicon single photon avalanche diodes (SPAD) working at photon counting mode were applied to improve the quantum efficiency and reduce the electronic noise, which resulted in quantum efficiency of 2.5%. With a power of 3 W diode pumped pulsed Nd:YAG laser and aperture of 250 mm Cassegrain telescope, the detectable range can cover the atmosphere from 0.3 km to the top troposphere (about 12-15 km). To the best of our knowledge, the design of this novel lidar system is described and the mixed-phase cloud and aerosol optical properties observations of backscatter coefficients, extinction coefficients, lidar ratio and depolarization ratio at 1064 nm were performed as demonstrations of the system capabilities.

14.
Opt Express ; 32(3): 4650-4667, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297661

RESUMO

Aerosol intensive optical properties, including lidar ratio and particle depolarization ratio, are of vital importance for aerosol typing. However, aerosol intensive optical properties at near-infrared wavelength are less exploited by atmospheric lidar measurements, because of the comparably small backscatter cross section of Raman-scattering and a low efficiency of signal detection compared to what is commonly available at 355 nm and 532 nm. To obtain accurate optical properties of aerosols at near-infrared wavelength, we considered three factors: Raman-spectra selection, detector selection, and interference-filter optimization. Rotational Raman scattering has been chosen for Raman signal detection, because of the higher cross-section compared to vibrational Raman scattering. The optimization of the properties of the interference filter are based on a comprehensive consideration of both signal-to-noise ratio and temperature dependence of the simulated lidar signals. The interference filter that has eventually been chosen uses the central wavelength at 1056 nm and a filter bandwidth (full-width-at-half-maximum) of 6 nm. We built a 3-channel 1064-nm rotational Raman lidar. In this paper two methods are proposed to test the temperature dependence of the signal-detection unit and to evaluate the quality of the Raman signals. We performed two measurements to test the quality of the detection channel: cirrus clouds in the free troposphere and aerosols in the planetary boundary layer. Our analysis of the measured Raman signals shows a negligible temperature dependence of the Raman signals in our system. For cirrus measurements, the Raman signal profile did not show crosstalk even for the case of strong elastic backscatter from clouds, which was about 100 times larger than Rayleigh scattering in the case considered here. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 27.8 ± 10.0 sr (1064 nm) at a height of 10.5-11.5 km above ground. For the aerosols in the planetary boundary layer, we found the mean lidar ratio of 38.9 ± 7.0 sr at a height of 1.0-3.0 km above ground.

15.
FASEB J ; 37(12): e23289, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950635

RESUMO

Clinically unpredictable retention following fat grafting remains outstanding problems because of the unrevealed mechanism of grafted fat survival. The role of autophagy, a process to maintain cellular homeostasis through recycling cellular debris, has yet been to be reported in fat grafting. This study aims to improve the survival of fat grafting through the autophagy. First, the relationship between cell death and autophagy in the early stage of fat grafting was evaluated through immunostaining, RNA sequencing, and western blot. Next, rapamycin, an autophagic agonist, was used for the culturing of adipose-derived stem cells and adipocytes during ischemia. Cell death, autophagy, and reactive oxygen species (ROS) were assayed. Finally, rapamycin was used to assist fat grafting in nude mice. The results demonstrated that the peak of cell death at the early stage of fat grafting was accompanied by a decrease in autophagy. In vitro, during ischemia, 25 nM was confirmed as the optimal dose of rapamycin that reduces cell death with enhanced autophagy and mitophagy, improved mitochondrial quality as well as decreased ROS accumulation. In vivo, promoted mitophagy, alleviated oxidative stress, and decreased cell apoptosis of rapamycin-treated fat grafts were observed in the early stage. In addition, rapamycin increased the survival of fat grafts with increased neovascularization and reduced fibrosis. We suggested that moderate autophagy induced by rapamycin contribute to enhanced ischemic tolerance and long term survival of fat grafts through mitochondrial quality control.


Assuntos
Autofagia , Sirolimo , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Sirolimo/farmacologia , Isquemia , Sobrevivência de Enxerto , Sobrevivência Celular
16.
Ann Hematol ; 103(9): 3723-3735, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38862793

RESUMO

Natural killer (NK) cells are equipped with anti-Epstein-Barr virus (EBV) function, however, whether EBV infection will affect NK cells reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. To identify the characteristics of NK cells, we prospectively enrolled 11 patients who occurred EBV reactivation post allo-HSCT and 11 patients without EBV infection as control. We found that that EBV infection induced the expansion of CD56bright and NKG2A+KIR- NK subsets,and decreased the cytotoxicity function of NK cells. The frequency of NKG2A+KIR- NK cells were higher in patients who progressed into post-transplant lymphoproliferative disorder (PTLD) than EBV viremia patients, which also correlated with decreased proliferation and cytotoxic function. By screening the activation receptors of NK cells, we found the DNAM-1+CD56bright NK cells is significantly increased after EBV stimulation, further we demonstrated that DNAM-1 is essential for EBV induced NK cells activation as the cytokine release against EBV-transformed lymphoblastoid cell lines(EBV-LCLs) of CD56bright NK cells were significantly decreased after DNAM-1 blockade. NK cells infusion suppressed the progression of EBV-related tumor mice model. A prospective cohort indicated that old donor age was an independent risk factor for EBV infection. Rapid CD56bri expansion and high expression of DNAM-1 on CD56bri NK cells in response to EBV reactivation correlated with rapid EBV clearance post allo-HSCT in patients with younger donors. In summary, our data showed that high expression of DNAM-1 receptors on NK cell may participate protective CD56bri NK cells response to EBV infection after allo-HSCT.


Assuntos
Antígeno CD56 , Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4 , Células Matadoras Naturais , Ativação Viral , Humanos , Células Matadoras Naturais/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Antígeno CD56/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Estudos Prospectivos , Adolescente , Adulto Jovem , Transplante Homólogo/efeitos adversos , Aloenxertos , Antígenos de Diferenciação de Linfócitos T
17.
Mol Cell Probes ; 73: 101944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049041

RESUMO

Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.


Assuntos
Endopeptidases , Neoplasias , Humanos , Proliferação de Células , Endopeptidases/genética , Endopeptidases/metabolismo , Neoplasias/genética , Ubiquitina/genética , Ubiquitina/metabolismo
18.
BMC Infect Dis ; 24(1): 780, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103829

RESUMO

BACKGROUND: The effect of nirmatrelvir/ritonavir on preventing post-COVID condition (PCC) in the BA4, BA5, and XBB Omicron predominant periods is not well understood. The purpose of this study was to assess how nirmatrelvir/ritonavir treatment affected both PCC and health-related quality of life. METHODS: This retrospective cohort study enrolled 2,524 adults aged 18 years and older who were eligible for nirmatrelvir/ritonavir between July 14 to November 14, 2022. All outcomes were observed from the patient's first visit to the primary health clinic, 1 week, 1 month, 3 months, and 6 months after testing positive for COVID-19. The primary outcome was the presence of PCC. Secondary outcomes included the effects on health-related quality of life, such as walking, bathing and dressing, activities, cause adverse emotions or signs that prevent individuals from leading normal lives over a 180-day observation period. RESULTS: There were no significant differences observed between the nirmatrelvir/ritonavir and those not administered (control group) in terms of PCC symptoms at 3 months (OR 0.71 95% CI 0.31, 1.64) and 6 months (OR 1.30 95% CI 0.76, 2.21). At 3 months, the use of nirmatrelvir/ritonavir was associated with a 26% reduction in symptoms causing negative emotions (OR 0.74 95% CI 0.60, 0.92) and an increased likelihood of symptoms limiting walking (OR 1.58 95% CI 1.10, 2.27). However, there were no significant differences between the nirmatrelvir/ritonavir and the control group in terms of the impact of PCC on health-related quality of life at 6 months. CONCLUSIONS: Our study indicates that the administration of nirmatrelvir/ritonavir does not significantly reduce PCC after 3 months and 6 months in a population with high vaccination coverage.


Assuntos
Tratamento Farmacológico da COVID-19 , Qualidade de Vida , Ritonavir , Humanos , Ritonavir/uso terapêutico , Masculino , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Malásia/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Idoso , Antivirais/uso terapêutico
19.
Phys Chem Chem Phys ; 26(37): 24699-24708, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39282801

RESUMO

Many active materials, such as bacteria and cells, are deformable. Deformability significantly affects their collective behaviors and movements in complex environments. Here, we introduce a two-dimensional deformable active vesicle (DAV) model to emulate cell-like deformable active matter, wherein the deformability can be continuously adjusted. We find that changes in deformability can induce phase separation of DAVs. The system can transition between a homogeneous gas state, a coexistence of gas and liquid, and a coexistence of gas and solid. The occurrence of deformation-induced phase separation is accompanied by nonmonotonic changes in effective concentration, particle size and shape. Moreover, the degree of deformability also impacts the motility and stress within the dense phase following phase separation. Our results offer new insights into the role of deformability in the collective behavior of active matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA