Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 96(6): e29729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860590

RESUMO

Dengue, the most prevalent mosquito-borne disease worldwide, poses a significant health burden. This study integrates clinical data and transcriptomic datasets from different phases of dengue to investigate distinctive and shared cellular and molecular features. Clinical data from 29 dengue patients were collected and analyzed alongside a public transcriptomic data set (GSE28405) to perform differential gene expression analysis, functional enrichment, immune landscape assessment, and development of machine learning model. Neutropenia was observed in 54.79% of dengue patients, particularly during the defervescence phase (65.79%) in clinical cohorts. Bioinformatics analyses corroborated a significant reduction in neutrophil immune infiltration in dengue patients. Receiver operating characteristic curve analysis demonstrated that dynamic changes in neutrophil infiltration levels could predict disease progression, especially during the defervescence phase, with the area under the curve of 0.96. Three neutrophil-associated biomarkers-DHRS12, Transforming growth factor alpha, and ZDHHC19-were identified as promising for diagnosing and predicting dengue progression. In addition, the activation of neutrophil extracellular traps was significantly enhanced and linked to FcγR-mediated signaling pathways and Toll-like receptor signaling pathways. Neutrophil activation and depletion play a critical role in dengue's immune response. The identified biomarkers and their associated pathways offer potential for improved diagnosis and understanding of dengue pathogenesis and progression.


Assuntos
Biomarcadores , Dengue , Progressão da Doença , Neutrófilos , Humanos , Neutrófilos/imunologia , Dengue/imunologia , Biomarcadores/sangue , Feminino , Masculino , Adulto , Armadilhas Extracelulares/imunologia , Perfilação da Expressão Gênica , Biologia Computacional , Transcriptoma , Infiltração de Neutrófilos , Ativação de Neutrófilo , Neutropenia/imunologia , Pessoa de Meia-Idade , Adulto Jovem , Curva ROC , Aprendizado de Máquina
2.
J Infect ; 89(2): 106208, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908522

RESUMO

OBJECTIVE: Similar with influenza virus, antigenic drift is highly relevant to SARS-CoV-2 evolution, and immune imprinting has been found to limit the performance of updated vaccines based on the emerging variants of SARS-CoV-2. We aimed to investigate whether repeated exposure to Omicron variant could reduce the immune imprinting from previous vaccination. METHODS: A total of 194 participants with different status of vaccination (unvaccinated, regular vaccination and booster vaccination) confirmed for first infection and re-infection with BA.5, BF.7 and XBB variants were enrolled, and the neutralizing profiles against wild type (WT) SARS-CoV-2 and Omicron sub-variants were analyzed. RESULTS: Neutralizing potency against the corresponding infected variant is significantly hampered along with the doses of vaccination during first infection. However, for the participants with first infection of BA.5/BF.7 variants and re-infection of XBB variant, immune imprinting was obviously alleviated, indicated as significantly increased ratio of the corresponding infected variant/WT ID50 titers and higher percentage of samples with high neutralizing activities (ID50 > 500) against BA.5, BF.7 and XBB variants. Moreover, repeated Omicron infection could induce strong neutralizing potency with broad neutralizing profiles against a series of other Omicron sub-variants, both in the vaccine naive and vaccine experienced individuals. CONCLUSIONS: Our results demonstrate that repeated Omicron infection dampens immune imprinting from vaccination with WT SARS-CoV-2 and induces broad neutralizing profiles against Omicron sub-variants.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinação , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Deriva e Deslocamento Antigênicos/imunologia , Imunização Secundária , Idoso
3.
Microbiol Spectr ; 12(4): e0181623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385650

RESUMO

Human adenovirus (HAdV) infects the respiratory system, thus posing a threat to health. However, immunodiagnostic reagents for human adenovirus are limited. This study aimed to develop efficient diagnostic reagents based on monoclonal antibodies for diagnosing various human adenovirus infections. Evolutionary and homology analyses of various human adenoviral antigen genes revealed highly conserved antigenic fragments. The prokaryotic expression system was applied to recombinant penton, hexon, and IVa2 conserved fragments of adenovirus, which were injected into BALB/c mice to prepare human adenovirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting were used to determine the immune specificity of the monoclonal antibodies. Indirect ELISA showed that monoclonal antibodies 1F10, 8D3, 4A1, and 9B2 were specifically bound to HAdV-3 and HAdV-55 and revealed high sensitivity and low detection limits for various human adenoviruses. Western blotting showed that 1F10 and 8D3 specifically recognized various human adenovirus types, including HAdV-1, HAdV-2, HAdV-3, HAdV-4, HAdV-5, HAdV-7, HAdV-21, and HAdV-55, and 4A1 specifically recognized HAdV-1, HAdV-2, HAdV-3, HAdV-5, HAdV-7, HAdV-21, and HAdV-55. IFAs showed that 1F10, 8D3, and 4A1 exhibited highly selective localization to A549 cells infected with HAdV-3 and HAdV-55. Finally, two antibody pairs that could detect hexon antigens HAdV-3 and HAdV-55 at low concentrations were developed. The monoclonal antibodies developed in this study show potential for detecting human adenoviruses. IMPORTANCE: In this study, we selected the three most conserved antigenic fragments of human adenovirus to prepare a murine monoclonal antibody for the first time, and human adenovirus antigenic fragments with heretofore unheard of degrees of conservatism were isolated. The three monoclonal antibodies with the ability to recognize human respiratory adenovirus over a broad spectrum were screened by hybridoma and monoclonal antibody preparation. Human adenovirus infections are serious; however, therapeutic drugs and diagnostic reagents are scarce. Thus, to reduce the serious consequences of human viral infections and adenovirus pneumonitis, early diagnosis of infection is required. The present study provides three monoclonal antibodies capable of recognizing a wide range of human adenoviruses, thereby offering guidance for subsequent research and development.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Adenovírus Humanos/genética , Sorogrupo , Proteínas do Capsídeo/genética
4.
Comput Struct Biotechnol J ; 21: 3728-3735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560123

RESUMO

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are among the most common tropical diseases affecting humans. To analyze the risk of clinical and transmission of DF/DHF in Shenzhen, the surveillance on patients of all-age patients with dengue virus (DENV) infections was conducted. Our findings revealed that the majority of DENV-infected patients are young to middle-aged males, and the development of the disease is accompanied by abnormal changes in the percentages of neutrophils, lymphocytes, and basophils. Demographic analysis revealed that these patients is concentrated in areas such as Futian District, which may be due to the higher mosquito density and temperature than that in other area. Subsequent, mosquito infection experiments confirmed that the effect of temperature shift on DENV proliferation and transmission. Not only that, constant temperatures can enhance the spread of DENV, even increase the risk of epidemic. Thus, the role of innate immune response should be highlighted in the prediction of severe severity of DENV-infected patients, and temperature should be taken into account in the prevention and control of DENV. Introduction: Dengue fever (DF) and dengue hemorrhagic fever (DHF) are among the most common tropical diseases affecting humans, and which caused by the four dengue virus serotypes (DENV 1-4). Objectives: To analyze the risk of clinical and transmission of DF/DHF in Shenzhen. Methods: The surveillance on patients of all-age patients with dengue virus (DENV) infections was conducted. Results: Our findings revealed that the majority of DENV-infected patients are young to middle-aged males, and the development of the disease is accompanied by abnormal changes in the percentages of neutrophils, lymphocytes, and basophils. Demographic analysis revealed that these patients is concentrated in areas such as Futian District, which may be due to the higher mosquito density and temperature than that in other area. Subsequent, mosquito infection experiments confirmed that the effect of temperature shift on DENV proliferation and transmission. Not only that, constant temperatures can enhance the spread of DENV, even increase the risk of epidemic. Conclusion: 1. Elevated levels of neutrophils, lymphocytes, basophils, and temperature are all significant risk factors for dengue transmission and pathogenesis; 2. Temperature increasing is associated with a higher risk of dengue transmission; 3. Fluctuations in temperature around 28 °C (28 ± 5 °C) would increase dengue transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA