Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(8): 4281-4291, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047033

RESUMO

VDAC1 is a critical substrate of Parkin responsible for the regulation of mitophagy and apoptosis. Here, we demonstrate that VDAC1 can be either mono- or polyubiquitinated by Parkin in a PINK1-dependent manner. VDAC1 deficient with polyubiquitination (VDAC1 Poly-KR) hampers mitophagy, but VDAC1 deficient with monoubiquitination (VDAC1 K274R) promotes apoptosis by augmenting the mitochondrial calcium uptake through the mitochondrial calcium uniporter (MCU) channel. The transgenic flies expressing Drosophila Porin K273R, corresponding to human VDAC1 K274R, show Parkinson disease (PD)-related phenotypes including locomotive dysfunction and degenerated dopaminergic neurons, which are relieved by suppressing MCU and mitochondrial calcium uptake. To further confirm the relevance of our findings in PD, we identify a missense mutation of Parkin discovered in PD patients, T415N, which lacks the ability to induce VDAC1 monoubiquitination but still maintains polyubiquitination. Interestingly, Drosophila Parkin T433N, corresponding to human Parkin T415N, fails to rescue the PD-related phenotypes of Parkin-null flies. Taken together, our results suggest that VDAC1 monoubiquitination plays important roles in the pathologies of PD by controlling apoptosis.


Assuntos
Apoptose , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Cálcio/fisiologia , Drosophila/genética , Drosophila/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/genética
2.
J Biol Chem ; 292(35): 14473-14485, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726639

RESUMO

Mitochondrial calcium plays critical roles in diverse cellular processes ranging from energy metabolism to cell death. Previous studies have demonstrated that mitochondrial calcium uptake is mainly mediated by the mitochondrial calcium uniporter (MCU) complex. However, the roles of the MCU complex in calcium transport, signaling, and dysregulation by oxidative stress still remain unclear. Here, we confirmed that Drosophila MCU contains evolutionarily conserved structures and requires essential MCU regulator (EMRE) for its calcium channel activities. We generated Drosophila MCU loss-of-function mutants, which lacked mitochondrial calcium uptake in response to caffeine stimulation. Basal metabolic activities were not significantly affected in these MCU mutants, as observed in examinations of body weight, food intake, body sugar level, and starvation-induced autophagy. However, oxidative stress-induced increases in mitochondrial calcium, mitochondrial membrane potential depolarization, and cell death were prevented in these mutants. We also found that inositol 1,4,5-trisphosphate receptor genetically interacts with Drosophila MCU and effectively modulates mitochondrial calcium uptake upon oxidative stress. Taken together, these results support the idea that Drosophila MCU is responsible for endoplasmic reticulum-to-mitochondrial calcium transfer and for cell death due to mitochondrial dysfunction under oxidative stress.


Assuntos
Apoptose , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias Musculares/metabolismo , Estresse Oxidativo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cafeína/farmacologia , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Inativação Gênica , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Sinais Direcionadores de Proteínas/efeitos dos fármacos , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Nat Commun ; 14(1): 5202, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626046

RESUMO

Although defects in intracellular calcium homeostasis are known to play a role in the pathogenesis of Parkinson's disease (PD), the underlying molecular mechanisms remain unclear. Here, we show that loss of PTEN-induced kinase 1 (PINK1) and Parkin leads to dysregulation of inositol 1,4,5-trisphosphate receptor (IP3R) activity, robustly increasing ER calcium release. In addition, we identify that CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) functions downstream of Parkin to directly control IP3R. Both genetic and pharmacologic suppression of CISD1 and its Drosophila homolog CISD (also known as Dosmit) restore the increased ER calcium release in PINK1 and Parkin null mammalian cells and flies, respectively, demonstrating the evolutionarily conserved regulatory mechanism of intracellular calcium homeostasis by the PINK1-Parkin pathway. More importantly, suppression of CISD in PINK1 and Parkin null flies rescues PD-related phenotypes including defective locomotor activity and dopaminergic neuronal degeneration. Based on these data, we propose that the regulation of ER calcium release by PINK1 and Parkin through CISD1 and IP3R is a feasible target for treating PD pathogenesis.


Assuntos
Conservadores da Densidade Óssea , Proteínas de Drosophila , Doença de Parkinson , Animais , Cálcio , Dopamina , Drosophila , Antagonistas de Hormônios , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/genética , Mamíferos , Proteínas Serina-Treonina Quinases , Proteínas de Drosophila/genética
4.
Mol Cells ; 43(1): 66-75, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31931552

RESUMO

Saturated fatty acids contribute to ß-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal ß-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic ß-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.


Assuntos
Citosol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/fisiologia , Mitocôndrias/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Linhagem Celular , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Estresse Oxidativo , Palmitatos/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA