Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 591(7849): 288-292, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658715

RESUMO

The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Desenvolvimento Vegetal , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Domínio Catalítico , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meristema/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Nanotechnology ; 32(14): 14LT01, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33316794

RESUMO

The n+-base width of a two-terminal vertical thyristor fabricated with n++(top-emitter)-p+(base)-n+(base)-p++(bottom-emitter) epitaxial Si layers was designed to produce a cross-point memory cell without a selector. Both the latch-up and latch-down voltages increased linearly with the n+-base width, but the voltage increase slope of the latch-up was 2.6 times higher than that of the latch-down, and the memory window increased linearly with the n+-base width. There was an optimal n+-base width that satisfied cross-point memory cell operation; i.e. ∼180 nm, determined by confirming that the memory window principally determined the condition of operation as a cross-point memory cell (i.e. one half of the latch-up voltage being less than the latch-down voltage and a sufficient voltage difference existing between the latch-up and latch-down voltages). The vertical thyristor designed with the optimal n+-base width produced write/erase endurance cycles of ∼109 by sustaining a memory margin (I on /I off ) of 102, and the cross-point memory cell array size of 1024 K sustained a sensing margin of 99 %, which is comparable with that of current dynamic random-access memory (DRAM). In addition, in the cross-point memory cell array, a ½ bias scheme (i.e. a memory array size of 1024 K for 0.02 W of power consumption) resulted in lower power consumption than a [Formula: see text] bias scheme (i.e. a memory array size of 256 K for 0.02 W of power consumption).

3.
Plant Physiol ; 179(4): 1810-1821, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692220

RESUMO

DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Desmetilação do DNA , Proteínas Nucleares/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Metilação de DNA , Epigenômica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Nicotinamidase/genética , Nicotinamidase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Nanotechnology ; 30(3): 035205, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444725

RESUMO

Thyristor random access memory without a capacitor has been highlighted for its significant potential to replace current dynamic random access memory. We fabricated a two-terminal (2-T) thyristor by wet chemical etching techniques on n+-p-n-p+ silicon epitaxial layers, which have the proper thicknesses and carrier concentrations, as provided by technology computer-aided design simulation. The etched features such as etch rate, surface roughness, and morphologies, in a potassium hydroxide (KOH) and an isotropic etchant, were compared. The type of silicon etchant strongly affected the etched shapes of the side wall and therefore critically influenced the device performance with varying turn-on voltages. The turn-on voltage of thyristor fabricated with a KOH solution showed a consistent tendency of operation voltage in the range of 2.2-2.5 V regardless of the cell size, while the thyristor formulated with isotropic etchant had an operation voltage which increased from about 2.3-4.4 V as the device dimension decreased from 200 µm to 10 µm. The optimized 2-T thyristor showed a memory window of about 2 V, a nearly zero-subthreshold swing, and a current on-off ratio of about 104-105.

5.
Plant Physiol ; 173(4): 2370-2382, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223317

RESUMO

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing activity for heat-inducible transcripts including HEAT STRESS TRANSCRIPTION FACTORs and various HEAT SHOCK PROTEINs for the establishment of heat stress tolerance in Arabidopsis (Arabidopsis thaliana). Our cell-based splicing reporter assay demonstrated STA1 acts on pre-mRNA splicing for specific subsets of stress-related genes. Cellular reconstitution of heat-inducible transcription cascades supported the view that STA1-dependent pre-mRNA splicing plays a role in DREB2A-dependent HSFA3 expression for heat-responsive gene expression. Further genetic analysis with a loss-of-function mutant sta1-1, STA1-expressing transgenic plants in Col background, and STA1-expressing transgenic plants in the sta1-1 background verified that STA1 is essential in expression of necessary genes including HSFA3 for two-step heat stress tolerance in plants. However, constitutive overexpression of the cDNA version of HSFA3 in the sta1-1 background is unable to execute plant heat stress tolerance in sta1-1 Consistently our global target analysis of STA1 showed that its splicing activity modulates a rather broad range of gene expression in response to heat treatment. The findings of this study reveal that heat-inducible STA1 activity for pre-mRNA splicing serves as a molecular regulatory mechanism underlying the plant stress tolerance to high-temperature stress.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Precursores de RNA/genética , Splicing de RNA , Termotolerância/genética , Arabidopsis/genética , Temperatura Alta , Modelos Genéticos , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico
6.
PLoS Genet ; 11(3): e1004973, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25730098

RESUMO

Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Homeodomínio/genética , Meristema/genética , Nicho de Células-Tronco/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Divisão Celular/genética , Citocininas/genética , Citocininas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/biossíntese , Homeostase , Meristema/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
7.
Plant J ; 84(6): 1192-205, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26576746

RESUMO

Photomorphogenesis is an essential program in plant development. This process is effected by the balanced cooperation of many factors under light and dark conditions. In a previous study, we showed that MYB hypocotyl elongation-related (MYBH) is involved in cell elongation. To expand our understanding of MYBH function, we performed a yeast two-hybrid assay and identified an MYB-like Domain transcription factor (MYBD). In this study, we investigated the function of MYBD, which is an MYBH homolog involved in anthocyanin accumulation. MYBD expression increased in response to light or cytokinin, and MYBD enhanced anthocyanin biosynthesis via repression of MYBL2, which encodes a transcription factor that has a negative effect on this process. In addition, MYBD binding in vivo to the MYBL2 promoter and the lower level of histone H3K9 acetylation at the upstream region of MYBL2 in MYBD over-expressing plants in comparison with wild-type plants imply that MYBD represses MYBL2 expression via an epigenetic mechanism. HY5 directly binds to the MYBD promoter, which indicates that MYBD acts on HY5-downstream in light- or cytokinin-triggered signaling pathways, leading to anthocyanin accumulation. Our results suggest that, although MYBD and MYBH are homologs, they act in opposite ways during plant photomorphogenesis, and these functions should be examined in further studies.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Citocininas , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Luz , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
Biochem Biophys Res Commun ; 457(2): 213-20, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25545061

RESUMO

AN1/A20-like Zinc finger family proteins are evolutionarily conserved regulatory components in eukaryotic signaling circuits. In Arabidopsis thaliana, the AN1/A20 Zinc finger family is encoded as 14 members in the genome and collectively referred to as stress-associated proteins (SAPs). Here we described AtSAP5 localized to the nucleus, and played a role in heat-responsive gene regulation together with MBF1c. Seedling survival assay of sap5 and mbf1c demonstrated consistent effects of AtSAP5 and MBF1C in response to two-step heat treatment, supporting their function in heat stress tolerance. Our findings yield an insight in A20/AN1-like Zinc finger protein AtSAP5 functions in plant adaptability under high temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sequência Conservada , Evolução Molecular , Temperatura Alta , Estresse Fisiológico , Dedos de Zinco , Adaptação Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligação Proteica , Transporte Proteico , Estresse Fisiológico/genética , Transativadores/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
9.
Plant Cell Rep ; 34(9): 1605-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26021844

RESUMO

KEY MESSAGE: Arabidopsis BIK1 negatively regulates EIN3-depedent gene expression as an immediate cellular response. BIK1 localizes to the plasma membrane and its autophosphorylation and kinase activity involves in EIN3 repression. BOTRYTIS INDUCED KINASE1 (BIK1) is a multifunctional receptor-like kinase that involves in ethylene-mediated plant defense signaling. The loss of function BIK1 becomes insensitive to ethylene, but it still accumulates a higher level of ETHYLENE INSENSITIVE3 (EIN3) that serves as the key transcription activator in ethylene signaling. To unequivocally elucidate BIK1 function on EIN3 regulation in ethylene signaling, we took a combined approach of transient expression assay and stable expression analysis of BIK1. In our cell-based functional assay BIK1 destabilized EIN3 and down-regulated EIN3-dependent transcription. Membrane localization and autophosphorylation of BIK1 were required for full repression of EIN3 function, but its kinase activity potential compromised such regulatory action. Consistently, the analysis of transgenic plants verified BIK1 function on EIN3 repression. Our findings have clarified that autophosphorylated BIK1 in the plasma membrane negatively regulates EIN3-dependent gene expression. Thus, ethylene insensitivity in bik1 appears to be an indirect or a feedback long-term response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA , Fosforilação , Plantas Geneticamente Modificadas , Estabilidade Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Frações Subcelulares/metabolismo , Transcrição Gênica
10.
Plant Cell Environ ; 37(10): 2303-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890857

RESUMO

Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Ácido Abscísico/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão , Tolerância ao Sal , Água do Mar/efeitos adversos , Cloreto de Sódio/farmacologia
11.
Plant Cell ; 23(5): 1876-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21558544

RESUMO

Despite its relevance for agricultural production, environmental stress-induced growth inhibition, which is responsible for significant yield reductions, is only poorly understood. Here, we investigated the molecular mechanisms underlying cell cycle inhibition in young proliferating leaves of the model plant Arabidopsis thaliana when subjected to mild osmotic stress. A detailed cellular analysis demonstrated that as soon as osmotic stress is sensed, cell cycle progression rapidly arrests, but cells are kept in a latent ambivalent state allowing a quick recovery (pause). Remarkably, cell cycle arrest coincides with an increase in 1-aminocyclopropane-1-carboxylate levels and the activation of ethylene signaling. Our work showed that ethylene acts on cell cycle progression via inhibition of cyclin-dependent kinase A activity independently of EIN3 transcriptional control. When the stress persists, cells exit the mitotic cell cycle and initiate the differentiation process (stop). This stop is reflected by early endoreduplication onset, in a process independent of ethylene. Nonetheless, the potential to partially recover the decreased cell numbers remains due to the activity of meristemoids. Together, these data present a conceptual framework to understand how environmental stress reduces plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Etilenos/farmacologia , Transdução de Sinais/fisiologia , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Fatores de Tempo , Transcriptoma
12.
Nature ; 451(7180): 789-95, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18273012

RESUMO

A principal question in MAP kinase (MAPK/MPK) cascade signalling is how similar components dictate different specificity in the information-processing machineries from yeast to humans and plants. In Arabidopsis, how MPK3/6 modulates distinct outputs in diverse signal transduction pathways remains elusive. By combining systematic cellular and genetic screens, here we uncover a previously unexpected MKK9-MPK3/MPK6 cascade promoting ethylene-insensitive 3 (EIN3)-mediated transcription in ethylene signalling. The mkk9 mutant exhibits a broad spectrum of moderate ethylene-insensitive phenotypes, and translocated MKK9 governs nuclear signalling downstream of receptors. Breaking a linear model and conventional MAPK signalling, ethylene inactivates the negative regulator constitutive triple response 1 (CTR1, a Raf-like MAPK kinase kinase (MAPKKK)) to activate the positive MKK9-MPK3/6 cascade. The bifurcate and antagonistic CTR1 and MKK9 pathways are both critical in determining ethylene-signalling specificity through two MAPK phosphorylation sites with opposite effects on EIN3 stability. The results suggest a new paradigm for linking intertwined MAPK cascades to control quantitative responses and specificity in signalling networks.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Etilenos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Ativação Enzimática , Etilenos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
13.
PLoS Genet ; 7(1): e1001263, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253566

RESUMO

Sugars are evolutionarily conserved signaling molecules that regulate the growth and development of both unicellular and multicellular organisms. As sugar-producing photosynthetic organisms, plants utilize glucose as one of their major signaling molecules. However, the details of other sugar signaling molecules and their regulatory factors have remained elusive, due to the complexity of the metabolite and hormone interactions that control physiological and developmental programs in plants. We combined information from a gain-of-function cell-based screen and a loss-of-function reverse-genetic analysis to demonstrate that fructose acts as a signaling molecule in Arabidopsis thaliana. Fructose signaling induced seedling developmental arrest and interacted with plant stress hormone signaling in a manner similar to that of glucose. For fructose signaling responses, the plant glucose sensor HEXOKINASE1 (HXK1) was dispensable, while FRUCTOSE INSENSITIVE1 (FINS1), a putative FRUCTOSE-1,6-BISPHOSPHATASE, played a crucial role. Interestingly, FINS1 function in fructose signaling appeared to be independent of its catalytic activity in sugar metabolism. Genetic analysis further indicated that FINS1-dependent fructose signaling may act downstream of the abscisic acid pathway, in spite of the fact that HXK1-dependent glucose signaling works upstream of hormone synthesis. Our findings revealed that multiple layers of controls by fructose, glucose, and abscisic acid finely tune the plant autotrophic transition and modulate early seedling establishment after seed germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Frutose-Bifosfatase/metabolismo , Frutose/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Frutose-Bifosfatase/genética , Mutação , Plântula/enzimologia , Plântula/genética
14.
Plant Cell Physiol ; 54(1): 155-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23220690

RESUMO

Arabidopsis thaliana Cell Growth Defect factor 1 (Cdf1) has been implicated in promotion of proapoptotic Bax-like cell death via the induction of reactive oxygen species (ROS). Here we report a conserved function of a chloroplast-targeting Cdf-related gene Responsive to Senescence (CRS) using CRS overexpression and loss of function in plants as well as CRS heterologous expression in yeast. CRS expression was strongly induced in senescent leaves, suggesting its main functions during plant senescence. CRS expression in yeast mitochondria increased the ROS level and led to cell death in a manner similar to Cdf1. In whole plants, overexpression of CRS caused the loss of chlorophylls (Chls) and the rapid onset of leaf senescence, while the lack of CRS led to the delay of leaf senescence in a loss-of-function mutant, crs. The higher and lower accumulation of H(2)O(2) was correlated with early and late senescence in CRS-overexpressing and crs mutant plants, respectively. Furthermore, expression of senescence-related marker genes and metacaspase genes was induced in CRS-overexpressing plants in response to dark. Our findings suggest that CRS plays a key role in the leaf senescence process that accompanies H(2)O(2) accumulation resulting in cell death promotion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Morte Celular/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Folhas de Planta/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Leveduras/citologia , Leveduras/genética
15.
Plant Cell Physiol ; 54(2): 195-208, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220733

RESUMO

Anther formation and dehiscence are complex pivotal processes in reproductive development. The secondary wall thickening in endothecial cells of the anther is a known prerequisite for successful anther dehiscence. However, many gaps remain in our understanding of the regulatory mechanisms underlying anther dehiscence in planta, including a possible role for jasmonic acid (JA) and H(2)O(2) in secondary wall thickening of endothecial cells. Here, we report that the cystathionine ß-synthase domain-containing protein CBSX2 located in the chloroplast plays a critical role in thickening of the secondary cell walls of the endothecium during anther dehiscence in Arabidopsis. A T-DNA insertion mutant of CBSX2 (cbsx2) showed increased secondary wall thickening of endothecial cells and early anther dehiscence. Consistently, overexpression of CBSX2 resulted in anther indehiscence. Exogenous JA application induced secondary wall thickening and caused flower infertility in the cbsx2 mutant, whereas it partially restored fertility in the CBSX2-overexpressing lines lacking the wall thickening. CBSX2 directly modulated thioredoxin (Trx) in chloroplasts, which affected the level of H(2)O(2) and, consequently, expression of the genes involved in secondary cell wall thickening. Our findings have revealed that CBSX2 modulates the H(2)O(2) status, which is linked to the JA response and in turn controls secondary wall thickening of the endothecial cells in anthers for dehiscence to occur.


Assuntos
Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Cistationina beta-Sintase/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Cloroplastos/genética , Ciclopentanos/farmacologia , Cistationina beta-Sintase/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Flores/enzimologia , Flores/genética , Flores/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Oxilipinas/farmacologia , Floroglucinol/metabolismo , Infertilidade das Plantas , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Planta ; 237(5): 1379-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397192

RESUMO

We previously reported that a rare sugar D-allose, which is the D-glucose epimer at C3, inhibits the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half seeds in rice (Fukumoto et al. 2011). D-Allose suppresses expressions of gibberellin-responsive genes downstream of SLR1 protein in the gibberellin-signaling through hexokinase (HXK)-dependent pathway. In this study, we discovered that D-allose induced expression of ABA-related genes including OsNCED1-3 and OsABA8ox1-3 in rice. Interestingly, D-allose also up-regulated expression of OsABF1, encoding a conserved bZIP transcription factor in ABA signaling, in rice. The D-allose-induced expression of OsABF1 was diminished by a hexokinase inhibitor, D-mannoheptulose (MNH). Consistently, D-allose also inhibited Arabidopsis growth, but failed to trigger growth retardation in the glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1. D-Allose activated AtABI5 expression in transgenic gin2 over-expressing wild-type AtHXK1 but not in gin2 over-expressing the catalytic mutant AtHXK1(S177A), indicating that the D-allose phosphorylation by HXK to D-allose 6-phosphate (A6P) is the first step for the up-regulation of AtABI5 gene expression as well as D-allose-induced growth inhibition. Moreover, overexpression of OsABF1 showed increased sensitivity to D-allose in rice. These findings indicated that the phosphorylation of D-allose at C6 by hexokinase is essential and OsABF1 is involved in the signal transduction for D-allose-induced growth inhibition.


Assuntos
Glucose/metabolismo , Glucose/farmacologia , Hexoquinase/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hexoquinase/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fosforilação , Proteínas de Plantas/genética
17.
Plant Physiol ; 158(4): 1955-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22232383

RESUMO

Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1-null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergence-dependent manner. From early seedling development through late senescence, SnRK1 activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stress-responsive gene regulation and in plant growth and development throughout the life cycle.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Núcleo Celular/genética , Inundações , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oxigênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transporte Proteico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
18.
Plant Physiol ; 157(3): 1196-208, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21914815

RESUMO

The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Epiderme Vegetal/citologia , Raízes de Plantas/citologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Células Vegetais/metabolismo , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica
19.
J Exp Bot ; 63(2): 1013-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22071266

RESUMO

Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice.


Assuntos
Ácido Abscísico/metabolismo , Germinação/fisiologia , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Protoplastos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/fisiologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
20.
Plant J ; 64(3): 524-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807212

RESUMO

Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxial-abaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5'-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxial-abaxial polarity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Ácidos Indolacéticos/metabolismo , Mutagênese Insercional , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA