Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2309, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085495

RESUMO

Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of "ChulaCov19", a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 µg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Animais , Camundongos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinas de mRNA
2.
Pharmaceutics ; 14(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890321

RESUMO

Previous investigations conducted on a liposomal formulation for a SARS-CoV-2 DNA vaccine manufactured using the thin-film layer rehydration method showed promising immunogenicity results in mice. The adaptation of the liposomal formulation to a scalable and reproducible method of manufacture is necessary to continue the investigation of this vaccine candidate. Microfluidics manufacture shows high potential in method translation. The physicochemical characterization of the blank liposomes produced by thin-film layer rehydration or microfluidics were shown to be comparable. However, a difference in lipid nanostructure in the bilayer resulted in a significant difference in the hydration of the thin-film liposomes, ultimately altering their complexation behavior. A study on the complexation of liposomes with the DNA vaccine at various N/P ratios showed different sizes and Zeta-potential values between the two formulations. This difference in the complexation behavior resulted in distinct immunogenicity profiles in mice. The thin-film layer rehydration-manufactured liposomes induced a significantly higher response compared to the microfluidics-manufactured samples. The nanostructural analysis of the two samples revealed the critical importance of understanding the differences between the two formulations that resulted in the different immunogenicity in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA