RESUMO
PURPOSE: Many studies have shown that cytochrome P450 (CYP) gene polymorphisms are usually associated with an increased risk of cardiovascular and cerebrovascular diseases. To explore the association of CYP2C8 and CYP2J2 gene polymorphisms with hypertensive intracerebral hemorrhage (HICH) in the Han Chinese population. METHODS: Forty HICH patients and 40 control subjects were recruited for this study. Two single nucleotide polymorphisms (SNP) (rs1058932, rs2275622) in the CYP2C8 gene and two SNPs (rs2271800, rs1155002) in the CYP2J2 gene were selected for genotyping by direct sequencing. Statistical analysis was applied to examine the effect of genetic variation on HICH. RESULTS: We found that variant alleles of CYP2C8 rs1058932 (A) and rs2275622 (C) were both significantly associated with HICH, especially in females. We also found significant associations of CYP2C8 rs1058932 (A) and rs2275622 (C) variant alleles with poor outcomes in HICH patients, especially in males. CONCLUSIONS: CYP2C8 gene polymorphisms might increase the risk of HICH in the Han Chinese population and might lead to poor outcomes. This finding adds to the body of literature supporting novel therapeutic strategies for HICH.
Assuntos
Citocromo P-450 CYP2J2 , Hemorragia Intracraniana Hipertensiva , Masculino , Feminino , Humanos , Citocromo P-450 CYP2C8/genética , Sistema Enzimático do Citocromo P-450/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: The construction of protein expression systems is mainly focused on carbon catabolite repression and quorum-sensing systems. However, each of these regulatory modes has an inherent flaw, which is difficult to overcome. Organisms also prioritize using different nitrogen sources, which is called nitrogen catabolite repression. To date, few gene regulatory systems based on nitrogen catabolite repression have been reported. RESULTS: In this study, we constructed a nitrogen switching auto-inducible expression system (NSAES) based on nitrogen catabolite regulation and nitrogen utilization in Aspergillus nidulans. The PniaD promoter that is highly induced by nitrate and inhibition by ammonia was used as the promoter. Glucuronidase was the reporter protein. Glucuronidase expression occurred after ammonium was consumed in an ammonium and nitrate compounding medium, achieving stage auto-switching for cell growth and gene expression. This system maintained a balance between cell growth and protein production to maximize stress products. Expressions of glycosylated and secretory proteins were successfully achieved using this auto-inducible system. CONCLUSIONS: We described an efficient auto-inducible protein expression system based on nitrogen catabolite regulation. The system could be useful for protein production in the laboratory and industrial applications. Simultaneously, NSAES provides a new auto-inducible expression regulation mode for other filamentous fungi.
Assuntos
Compostos de Amônio , Repressão Catabólica , Compostos de Amônio/metabolismo , Glucuronidase , Nitratos/metabolismo , Nitrogênio/metabolismoRESUMO
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44-positive (CD44+ Fbs) and CD44-negative carcinoma-associated fibroblasts (CD44- Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+ Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel-induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+ Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Modelos Biológicos , Proteínas de Ligação a RNA/metabolismoRESUMO
ß-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (ßT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.
Assuntos
Bacillus , Temperatura Alta , Álcalis , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Estabilidade Enzimática , Concentração de Íons de HidrogênioRESUMO
INTRODUCTION: Increasing evidence reveals critical roles for CHD2 in children with developmental and epileptic encephalopathy. OBJECTIVES: The aim was to present clinical analysis results of five cases with CHD2 mutations and 157 reported cases with non-copy number variations (non-CNV) of CHD2. METHODS: This study recruited pediatric epilepsy patients with CHD2 mutations and clinical data from November 2016 to October 2023 in the Linyi People's Hospital, China. Whole-exome and gene panel sequencing were employed to find mutations. The HGMD and PubMed databases were examined for documented cases that had CHD2 mutations. RESULTS: This study reports five cases with CHD2 mutations: c.3543T > A, c.1850A > G, c.2536C > T, c.4233_4236del, c.3782G > C. Three novel mutations (c.3543T > A, c.1850A > G, c.2536C > T) have never been reported. c.4233_4236del has been reported in three cases, indicating that this locus may be a mutation hotspot. c.3782G > C has been reported in one case. All five patients had seizures before the age of four. Three patients had varying degrees of developmental delay, and four patients had varying degrees of intellectual disability. All of them had controlled seizures after Valproic acid (VPA) monotherapy or VPA in combination with other medications. Furthermore, we reviewed 157 reported cases having non-CNV mutations of CHD2. Most mutations of these cases were de novo. Epilepsy, developmental delay, and intellectual disability were the typical clinical phenotypes. We also found a significant clustering of the mutations near the C-terminus of the CHD2 protein (P < 0.001). CONCLUSION: This study reports new CHD2 genotypes and analyzes reported CHD2 mutation cases. Given its significance in epileptic encephalopathies, research on the CHD2 gene may provide new insights into epileptogenesis.
Assuntos
Proteínas de Ligação a DNA , Epilepsia , Mutação , Humanos , Epilepsia/genética , Masculino , Feminino , Pré-Escolar , Proteínas de Ligação a DNA/genética , China , Lactente , Criança , DNA Helicases/genética , Deficiências do Desenvolvimento/genética , População do Leste AsiáticoRESUMO
Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.
Assuntos
Glucose , Amido , Amido/química , Zea mays/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Archaea , Especificidade por SubstratoRESUMO
Ganoderma lucidum polysaccharides are valuable natural compounds possessing significant biological activity, with glycosyltransferases playing a crucial role in their biosynthesis. Although the function of ß-1,3-glucosyltransferase in polysaccharides production is well understood, the role of α-1,3-glucosyltransferase in edible fungi remains unclear. In this study, over-expression of the α-1,3-glucosyltransferase gene in G. lucidum (glagt) was found to suppress the growth, with the maximum biomass and mycelial growth rate decreasing by 21.78 % and 79.61 %, respectively, a behavior distinct from ß-1,3-glucosyltransferase. The fungal pellet diameter decreased by 38 % and the cell-wall thickness by 32.44 %, whereas intracellular and extracellular polysaccharides production increased by 27.58 % and 66.08 %, respectively. In the transcription level, overexpressing the glagt gene i) downregulated the citrate synthase and isocitrate dehydrogenase gene in the TCA cycle, disrupting energy metabolism and fungal growth; ii) upregulated key enzymes involved in UDP-glucose synthesis and glycosyltransferases (gl24465, gl24971, and gl22535); and iii) universally increased the transcriptional level of glucosidases gl21451, gl30087, and gl24581 by 22 %-397 %, contributing to cell-wall thinning to facilitate polysaccharides export. Conversely, the glagt gene downregulation promoted G. lucidum growth and decreased polysaccharides production. The results elucidate the roles of GLAGT and are expected to inspire in-depth exploration of polysaccharides biosynthesis pathways.
Assuntos
Regulação Fúngica da Expressão Gênica , Glucosiltransferases , Reishi , Reishi/genética , Reishi/enzimologia , Reishi/crescimento & desenvolvimento , Reishi/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Polissacarídeos/biossíntese , Biomassa , Polissacarídeos Fúngicos/biossíntese , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
Diacylglycerol (DAG) is an intermediate product in lipid metabolism and plays an important physiological role in human body. It is mainly prepared by hydrolyzing lipid with lipase. However, research on the detection method of 1, 2-diacylglycerol (1, 2-DAG) and 1, 3-diacylglycerol (1, 3-DAG) and catalytic specificity of lipase was not enough, which limits its wide application. To address these challenges, an efficient quantitative detection method was first established for 1, 2-DAG (0.025-0.200 g/L) and 1, 3-DAG (0.025-0.150 g/L) by combining supercritical fluid chromatography with evaporative light scattering detector and optimizing the detection and analysis parameters. Based on the molecular docking between Thermomyces lanuginosus lipase (TLL) and triolein, five potential substrate binding sites were selected for site-specific saturation mutation to construct a mutation library for enzyme activity and position specificity screening. The specificity of sn-1, 3 of the I202V mutant was the highest in the library, which was 11.7% higher than the specificity of the wild type TLL. In summary, the position specificity of TLL was modified based on a semi-rational design, and an efficient separation and detection method of DAG isomers was also established, which provided a reference for the study of the catalytic specificity of lipase.
Assuntos
Diglicerídeos , Lipase , Humanos , Simulação de Acoplamento Molecular , Sítios de Ligação , Catálise , Lipase/genéticaRESUMO
BACKGROUND: The active components of Cortex Periplocae (CP) exert antitumor properties in many cancers. However, little is known about their effects on glioma or the related underlying mechanisms. OBJECTIVES: The study investigated the underlying mechanism of CP in treating glioma. MATERIAL AND METHODS: The U251 and TG905 cells were treated with an ethanol extract from CP. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and a colony formation assay. The flow cytometric analysis was applied to explore the induction of cell cycle arrest and apoptosis. The expression levels of cell cycleand apoptosis-associated proteins were measured with western blot. A network pharmacology method was performed to predict the potential mechanism underlying the effects of the active components of CP on glioma. Then, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics analysis was used to verify the differentially expressed proteins and pathways in order to reveal the underlying mechanisms. Furthermore, to determine the iTRAQ results, 6 candidate proteins were chosen for quantification using parallel reaction monitoring (PRM). RESULTS: The CP extract inhibited the proliferation of U251 and TG905 cells and induced cell cycle arrest and apoptosis. There are 16 active compounds of CP. The antitumor mechanism of CP may be related to the apoptosis pathway, p53 signaling pathway, PI3K-AKT pathway, or transcriptional misregulation in cancer pathway. Six proteins (HSP90AB1, TOP2A, ATP1A1, TGFß1, ATP1B1, and TYMS) were determined to be key factors involved in regulating CP in glioma. CONCLUSIONS: Our research revealed the underlying mechanism of CP in treating glioma using integrated network pharmacology and iTRAQ-based quantitative proteomics technology.
Assuntos
Glioma , Fosfatidilinositol 3-Quinases , Humanos , Proteômica , Farmacologia em Rede , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Apoptose , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
This study explores the impact of mediators and metal ions of laccase-mediated oxidation and ferrate(VI) oxidation for the simultaneous removal of tetracycline antibiotics (TCs) and sulfonamide antibiotics (SAs) and to effectively remove their antimicrobial activity. The results showed that the antimicrobial activity of tetracycline against Bacillus altitudinis and Escherichia coli was significantly reduced, and the antimicrobial activity of sulfamethoxazole against B. altitudinis disappeared completely after treatment with the laccase-ABTS system. The combination of 6.0 U/mL of laccase and 0.2 mmol/L of ABTS removed 100% of 20.0 mg/L of tetracycline after 1.0 min at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 6.7%. The Al3+ and Cu2+ ions promoted the oxidation, and the Mn2+ ion decelerated the oxidation of tetracycline and sulfamethoxazole by the laccase-mediator systems. In contrast, the antimicrobial activity of tetracycline against B. altitudinis and E. coli was shown to be significantly reduced, and the sulfamethoxazole still retained high antimicrobial activity against B. altitudinis after treatment with Fe(VI) oxidation. The removal ratio of 20.0 mg/L of tetracycline was 100% after 1.0 min of treatment with 982.0 mg/L of K2FeO4 at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 49.5%. The Al3+, Cu2+, and Mn2+ ions both decelerated the oxidation of tetracycline and sulfamethoxazole by Fe(VI) oxidation. In general, the combination of the laccase-ABTS system and Fe(VI) was proposed for the simultaneous treatment of TCs and SAs in wastewater and to effectively remove their antimicrobial activity.
Assuntos
Lacase , Poluentes Químicos da Água , Lacase/metabolismo , Sulfametoxazol , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Tetraciclina , Oxirredução , Íons , Poluentes Químicos da Água/químicaRESUMO
Hyperbranched polysaccharides (HBPSs) are the main components in cell wall and exopolysaccharide (EPS) of Pleurotus tuber-regium. To enhance the yield of these macromolecules, corn oil at 4% addition exhibited the best effect for production of mycelial biomass at 20.49 g/L and EPS at 0.59 g/L, which was 2.56 folds and 1.90 folds of the control, respectively. The treated hyphae were much thicker with smooth surface, while its cell wall content (43.81 ± 0.02%) was 1.96 times of the control (22.34 ± 0.01%). Moreover, a large number of lipid droplets could be visualized under the view of confocal laser scanning microscopy (CLSM). RNA-seq analysis revealed that corn oil could enter the cells and result in the up-regulation of genes on cell morphology and membrane permeability, as well as the down-regulation on expression level of polysaccharide hydrolase and genes involved in the MAPK pathway, all of which probably contribute to the increase of polysaccharides production.
Assuntos
Óleo de Milho , Pleurotus , Biomassa , Micélio/metabolismo , Pleurotus/metabolismo , Polissacarídeos/metabolismoRESUMO
BACKGROUND: Crucian carp (abbreviated CC) belongs to the genus of Carassius within the family of Cyprinidae. It has been one of the most important freshwater species for Chinese aquaculture and is especially abundant in the Dongting water system of Hunan province. CC used to be considered as all diploid forms. However, coexistence of diploid (abbreviated 2nCC), triploid (abbreviated 3nCC) and tetraploid crucian carp (abbreviated 4nCC) population of the Dongting water system was first found by our recently researches. RESULTS: We examined the ploidy level and compared biological characteristics in different ploidy CC. In reproductive mode, 2nCC was bisexual generative and 4nCC generated all-female offspring by gynogenesis. However, 3nCC generated progenies in two different ways. 3nCC produced bisexual triploid offspring fertilized with 3nCC spermatozoa, while it produced all-female triploid offspring by gynogenesis when its ova were activated by heterogenous spermatozoa. The complete mitochondrial DNA of three different ploidy fishes was sequenced and analyzed, suggesting no significant differences. Interestingly, microchromosomes were found only in 3nCC, which were concluded to be the result of hybridization. Allogenetic DNA fragments of Sox genes were obtained in 3nCC and 4nCC, which were absent in 2nCC. Phylogenetics analysis based on Sox4 gene indicated 3nCC and 4nCC formed a separate group from 2nCC. CONCLUSIONS: In summary, this is the first report of the co-existence of three types of different ploidy crucian carps in natural waters in China. It was proved that the coexistence of different ploidy CC was reproductively maintained. We further hypothesized that 3nCC and 4nCC were allopolyploids that resulted from hybridization. The different ploidy CC population we obtained in this study possesses great significance for the study of polyploidization and the evolution of vertebrates.
Assuntos
Carpas/genética , Tetraploidia , Triploidia , Animais , Feminino , Água Doce , Masculino , ReproduçãoRESUMO
INTRODUCTION: G elongation factor mitochondrial 1 (GFM1) encodes one of the mitochondrial translation elongation factors. GFM1 variants were reported to be associated with neurological diseases and liver diseases in a few cases. Here, we present a novel composition of two heterozygous mutations of GFM1 in a boy with epilepsy, mental retardation, and other unusual phenotypes. METHODS: The patient was found to be blind and experienced recurrent convulsive seizures such as nodding and hugging at the age of 3 months. After antiepileptic treatment with topiramate, he had no obvious seizures but still had mental retardation. The patient vomited frequently at 16 months old, sometimes accompanied by epileptic seizures. Hematuria metabolic screening, mutation screening of mitochondrial gene, and mitochondrial nuclear gene were negative. Then, he was analyzed by whole-exome sequencing (WES). RESULTS: Whole-exome sequencing revealed a novel composition of two heterozygous mutations in GFM1, the maternal c.679G > A (has not been reported) and the paternal c.1765-1_1765-2del (previously reported). At present, there is no specific and effective treatment for the disease, and the prognosis is very poor. CONCLUSION: The discovery of new phenotypes and new genotypes will further enrich the diagnosis information of the disease and provide more experiences for clinicians to quickly diagnose the disease and judge the prognosis.
Assuntos
Epilepsia , Deficiência Intelectual , Criança , China , Epilepsia/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Proteínas Mitocondriais , Mutação , Fator G para Elongação de Peptídeos/genéticaRESUMO
A native laccase (Lac-Q) with robust cold-adapted and thermostable characteristics from the white-rot fungus Pycnoporus sp. SYBC-L10 was purified, characterized, and used in antibiotic treatments. Degradation experiments revealed that Lac-Q at 10.0 U mL-1 coupled with 1.0 mmol L-1 ABTS could degrade 100% of the tetracycline or oxytetracycline (50 mg L-1) within 5â¯min with a static incubation at 0 °C (pH 6.0). The presence of the Mn2+ ion inhibited the removal rate of tetracycline and oxytetracycline by the Lac-Q-ABTS system, and the presence of Al3+, Cu2+, and Fe3+ accelerated the removal rate of tetracycline and oxytetracycline by the Lac-Q-ABTS system. Furthermore, the growth inhibition of Bacillus altitudinis SYBC hb4 and E. coli by tetracycline antibiotics revealed that the antimicrobial activity was significantly reduced after treatment with the Lac-Q-ABTS system. Finally, seven transformation products of oxytetracycline (namely TP 445, TP 431, TP 413, TP 399, TP 381, TP 367, and TP 351) were identified during the Lac-Q-mediated oxidation process by using UPLC-MS/MS. A possible degradation pathway including deamination, demethylation, and dehydration was proposed. These results suggest that the Lac-Q-ABTS system shows a great potential for the treatment of antibiotic wastewater containing different metal ions at various temperatures.
Assuntos
Antibacterianos/química , Lacase/química , Oxitetraciclina/química , Pycnoporus/enzimologia , Tetraciclina/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Basidiomycota/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Lacase/isolamento & purificação , Metais/química , Oxirredução , TemperaturaRESUMO
Sargassum fusiforme is a type of brown algae and well known as a longevity promoting vegetable in Northeastern Asia. The polysaccharides derived from Sargassum fusiforme (SFPs) have been suggested as an antioxidant component for anti-aging function. However, global molecular changes in vivo by SFPs have not been fully elucidated. Here, we present a proteomics study using liver tissues of aged male mice that were fed with SFPs. Of forty-nine protein spots, thirty-eight were up-regulated and eleven were down-regulated, showing significant changes in abundance by two-dimensional gel electrophoresis. These differentially expressed proteins were mainly involved in oxidation-reduction, amino acid metabolism, and energy metabolism. Forty-six proteins were integrated into a unified network, with catalase (Cat) at the center. Intriguingly, most of the proteins were speculated as mitochondrial-located proteins. Our findings suggested that SFPs modulated antioxidant enzymes to scavenge redundant free radicals, thus preventing oxidative damage. In conclusion, our study provides a proteomic view on how SFPs have beneficial effects on the aspects of antioxidant and energy metabolism during the aging process. This study facilitates the understanding of anti-aging molecular mechanisms in polysaccharides derived from Sargassum fusiforme.
Assuntos
Envelhecimento , Antioxidantes/farmacologia , Fígado/efeitos dos fármacos , Polissacarídeos/farmacologia , Sargassum/química , Animais , Antioxidantes/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polissacarídeos/química , ProteômicaRESUMO
BACKGROUND: Point and copy number variant mutations in the PRRT2 gene have been identified in a variety of paroxysmal disorders and different types of epilepsy. In this study, we analyzed the phenotypes and PRRT2-related mutations in Chinese epilepsy children. METHODS: A total of 492 children with epilepsy were analyzed by whole exome sequencing (WES) and low-coverage massively parallel CNV sequencing (CNV-seq) to find the single nucleotide variants and copy number variations (CNVs). And quantitative polymerase chain reaction was utilized to verify the CNVs. Their clinical information was followed up. RESULTS: We found PRRT2-related mutations in 19 patients (10 males and nine females, six sporadic cases and 13 family cases). Twelve point mutations, four whole gene deletion, and three 16p11.2 deletions were detected. The clinical features of 39 patients in 19 families included one early childhood myoclonic epilepsy (ECME), one febrile seizure (FS), two infantile convulsions with paroxysmal choreoathetosis (ICCA), six paroxysmal kinesigenic dyskinesias (PKD), 12 benign infantile epilepsy (BIE), and 17 benign familial infantile epilepsy (BFIE). All patients had normal brain MRI. Interictal EEG showed only one patient had generalized polyspike wave and five patients had focal transient discharges. Focal seizures originating in the frontal region were recorded in one patient, two from the temporal region, and two from the occipital region. Most patients were treated effectively with VPA or OXC, and the child with myoclonic seizures was not sensitive to antiepileptic drugs. CONCLUSION: PRRT2 mutations can be inherited or de novo, mainly inherited. The clinical spectrum of PRRT2 mutation includes BIE, BFIE, ICCA, PKD, FS, and ECME. The PRRT2-related mutations contained point mutation, whole gene deletion and 16p11.2 deletions, and large microdeletion mutations mostly de novo. It is the first report of PRRT2 mutation found in ECME. Our report expands the mutation and clinical spectrum of PRRT2-related epilepsy.
Assuntos
Epilepsia Neonatal Benigna , Epilepsia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , LinhagemRESUMO
Crossing the cyprinids diploid blunt snout bream Megalobrama amblycephala (BSB) and Carassius auratus red var. (RCC) generated sterile triploid (3nRB) and fertile tetraploid (4nRB) hybrid offspring. Utilizing inverted terminal repeats (ITRs) of transposon Tdr1 from Danio rerio as PCR primer, the results showed that evident change in the number of Tc1-like transposons in 4nRB relative to BSB occurred, whereas such change did not arise in 3nRB compared to BSB. No Tc1-like transposon was found in RCC. A novel transposon was isolated from both BSB and 3nRB and designated as Tma1, which consisted of multiple copies after dot-blot hybridization. Based on the analysis of PCR amplified flanking sequence, characterization of Tma1 indicated that this element flanked by a duplicated TA dinucleotide and harbored an ITR of about 224 bp. Tma1 also harbored an incomplete transposase gene. Another novel transposon designated as Tte1 was detected in 4nRB, which harbored an ITR of roughly 130 bp and consisted of multiple copies, but had no transposase gene. The analysis of PCR amplification and Southern blot hybridization showed that DNAs of 4nRB, which were hybridized to DIG-labeled pTma1, did not give band by PCR with Tma1 primer, on the other hand, 7 of 15 DNA samples from BSB, which were hybridized to DIG-labeled pTte1, did not produce band by PCR with Tte1 primer. These results suggest that Tte1 may be a recent invasion in BSB population and burst in 4nRB offspring. Our data provide clues as to the possible role of transposons as a driving mechanism for genomic evolution.
Assuntos
Cruzamentos Genéticos , Cyprinidae/genética , Elementos de DNA Transponíveis/genética , Variação Genética , Carpa Dourada/genética , Poliploidia , Animais , Sequência de Bases , Southern Blotting , Feminino , Genoma/genética , Haploidia , Hibridização Genética , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Sequências Repetidas Terminais/genéticaRESUMO
Epilepsy is a common and chronic neurological disease with a high degree of genetic heterogeneity. The etiology and pathogenesis of the disease have not been fully understood. Many studies suggested that there was a reciprocal relationship between mitochondrial dysfunction and epilepsy, but few studies focused on the mitochondrial genome (mtDNA) of the epilepsy patient which was extremely important for the mitochondrial function. In our study, we obtained complete mtDNA sequences of 27 idiopathic epilepsy patients and healthy people, and compared the sequence data with 30,000 GenBank sequences including 277 Han Chinese mtDNA sequences. We analyzed each variant that might be related to disease and examined the statistically significant variant in more than 300 patients and healthy people. Ultimately, we identified 27 variants which were reported to be associated with diseases, 4 rare variants (321T > G, 15973 T > C, 3897C > A, 12580 C > T), and a nonsynonymous variant (3571 C > T) which was predicted to be damaging. Although no variant was found to be significantly associated with epilepsy, our study provided a new insight into epilepsy study on an aspect of the mitochondrial genome.
RESUMO
OBJECTIVE: We aimed to expound feasibility of serum cell-free microRNA-214 (miR-214) as a noninvasive biomarker for glioma in this study. PATIENTS AND METHODS: We detected expression of miR-214 in medium from 2 glioma cell lines to confirm whether it is secretory in screening phase. Then, we verified cell-free miR-214 expression in serum samples from an independent set of 100 preoperative patients with glioma, 30 matching postoperative patients, and 100 healthy controls. RESULTS: MiR-214 was secreted from glioma cell lines. Extracellular miR-214 levels were significantly overexpressed in preoperative serum from glioma patients with glioma, whereas its expression significantly decreased in matched postoperative serum. Upregulated cell-free miR-214 in serum was significantly associated with higher tumor grade, absence of isocitrate dehydrogenase, and unmethylated methylguanine methyltransferase promoter. Extracellular miR-214 in serum could effectively distinguish patients with glioma from healthy control (area under the curve = 0.885; 95% confidence interval, 0.833-0.926). Moreover, serum cell-free miR-214 was an independent prognostic indicator of overall survival for patients with glioma. CONCLUSIONS: Serum cell-free miR-214 could serve as a promising noninvasive biomarker of glioma in tumor stratification, early diagnosis, and prognostic evaluation.
Assuntos
MicroRNA Circulante/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/diagnóstico , Glioma/genética , MicroRNAs/genética , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Feminino , Glioma/patologia , Humanos , Masculino , PrognósticoRESUMO
Damage accumulated in the genome and macromolecules is largely attributed to increased oxidative damage and a lack of damage repair in a cell, and this can eventually trigger the process of aging. Alleviating the extent of oxidative damage is therefore considered as a potential way to promote longevity. SFPS, a heteropolysaccharide extracted from the brown alga Sargassum fusiforme, has previously been shown to alleviate oxidative damage during the aging process in mice, but whether SFPS could extend the lifespan of an organism was not demonstrated. Furthermore, the precise component within SFPS that is responsible for the antioxidant activity and the underlying mechanism of such activity was also not resolved. In this study, SP2, a fucoidan derived from SFPS, was shown to exhibit strong antioxidant activity as measured by in vitro radical-scavenging assays. SP2 also improved the survival rate of D. melanogaster subjected to oxidative stress. The flies that were fed with a diet containing SP2 from the time of eclosion displayed significant enhancement in lifespan and reduced accumulation of triglyceride at the old-age stage. In addition, SP2 markedly improved the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the contents of the malondialdehyde (MDA) and oxidized glutathione (GSSG) in old flies. Furthermore, SP2 also upregulated the expression levels of the nuclear factor-erythroid-2-like 2 (nfe2l2 or nrf2) and its downstream target genes, accompanied by a dramatic reduction in the expression of kelch-like ECH-associated protein 1 (keap1, a canonical inhibitor of the Nrf2) in old flies. Additional support linking the crucial role of the Nrf2/ARE pathway to the antioxidant effect of SP2 was the relatively high survival rate under heat stress for D. melanogaster individuals receiving SP2 supplement, an effect that was abolished by the inclusion of inhibitors specific for the Nrf2/ARE pathway. Collectively, the results indicated that SP2, a S. fusiforme fucoidan, could promote longevity in D. melanogaster by enhancing the Nrf2-mediated antioxidant signaling pathway during the aging process.