Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377137

RESUMO

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Assuntos
Hemípteros , Inseticidas , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Inseticidas/farmacologia , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacologia , Mutação
2.
J Fluoresc ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613712

RESUMO

A naphthalimide Schiff base fluorescent probe (BSS) was designed and synthesized from 4-bromo-1,8-naphthalic anhydride, and its structure was characterized by 1HNMR, 13CNMR, FTIR, and MS. Fluorescence emission spectra showed that probe BSS could realize the "turn-off" detection of Cu2+ in acetonitrile solution, detection process with strong specificity and excellent anti-interference of other metal ions. In the fluorescence titration experiments, fluorescence intensity of BSS showed a good linear relationship with the Cu2+ concentration (0-10 µmol/L), and the detection limit was up to 7.0 × 10- 8 mol/L. Meanwhile, BSS and Cu2+ could form a 1:1 complex (BSS-Cu2+) during the reaction process. Under the same detection conditions, complex BSS-Cu2+ had specific fluorescence recovery properties for H2PO4- and the whole process was not only fast (6 s) but also free of interference from other anions, with a detection limit was as low as 5.7 × 10- 8 mol/L. In addition, complex BSS-Cu2+ could be successfully applied to the detection of H2PO4- in actual water samples, which with excellent application prospects.

3.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731609

RESUMO

Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to deeply understand the growth mechanism of lithium dendrites. Here, the growth mechanism of lithium dendrites is briefly summarized, and the real-time monitoring technologies of lithium dendrite growth in recent years are reviewed. The real-time monitoring technologies summarized here include in situ X-ray, in situ Raman, in situ resonance, in situ microscopy, in situ neutrons, and sensors, and their representative studies are summarized. This paper is expected to provide some guidance for the research of lithium dendrites, so as to promote the development of LIBs.

4.
Plant J ; 112(4): 1051-1069, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36176211

RESUMO

Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.


Assuntos
Sesamum , Sesamum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Produtos Agrícolas/genética , Metaboloma/genética
5.
J Am Chem Soc ; 145(11): 6428-6433, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897963

RESUMO

Indium phosphide (InP) quantum dots have enabled light-emitting diodes (LEDs) that are heavy-metal-free, narrow in emission linewidth, and physically flexible. However, ZnO/ZnMgO, the electron-transporting layer (ETL) in high-performance red InP/ZnSe/ZnS LEDs, suffers from high defect densities, quenches luminescence when deposited on InP, and induces performance degradation that arises due to trap migration from the ETL to the InP emitting layer. We posited that the formation of Zn2+ traps on the outer ZnS shell, combined with sulfur and oxygen vacancy migration between ZnO/ZnMgO and InP, may account for this issue. We synthesized therefore a bifunctional ETL (CNT2T, 3',3'″,3'″″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-3-carbonitrile)) designed to passivate Zn2+ traps locally and in situ and to prevent vacancy migration between layers: the backbone of the small molecule ETL contains a triazine electron-withdrawing unit to ensure sufficient electron mobility (6 × 10-4 cm2 V-1 s-1), and the star-shaped structure with multiple cyano groups provides effective passivation of the ZnS surface. We report as a result red InP LEDs having an EQE of 15% and a luminance of over 12,000 cd m-2; this represents a record among organic-ETL-based red InP LEDs.

6.
Small ; 19(11): e2205336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581559

RESUMO

Functional passivators are conventionally utilized in modifying the crystallization properties of perovskites to minimize the non-radiative recombination losses in perovskite light-emitting diodes (PeLEDs). However, the weak anchor ability of some commonly adopted molecules has limited passivation ability to perovskites and even may desorb from the passivated defects in a short period of time, which bring about plenty of challenges for further development of high-performance PeLEDs. Here, a multidentate molecule, formamidine sulfinic acid (FSA), is introduced as a novel passivator to perovskites. FSA has multifunctional groups (S≐O, C≐N and NH2 ) where the S≐O and C≐N groups enable coordination with the lead ions and the NH2 interacts with the bromide ions, thus providing the most effective chemical passivation for defects and in turn the formation of highly stable perovskite emitters. Moreover, the interaction between the FSA and octahedral [PbBr6 ]4- can inhibit the formation of unfavorable low-n domains to further minimize the inefficient energy transfer inside the perovskite emitters. Therefore, the FSA passivated green-emitting PeLED exhibits a high external quantum efficiency (EQE) of 26.5% with fourfold enhancement in operating lifetime as compared to the control device, consolidating that the multidentate molecule is a promising strategy to effectively and sustainably passivate the perovskites.

7.
J Transl Med ; 21(1): 83, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740679

RESUMO

BACKGROUND: Gastric cancer (GC) is the third-leading cause of cancer-associated mortalities globally. The deregulation of circular RNAs (circRNAs) and microRNAs (miRNAs or miRs) is widely implicated in the pathogenesis and progression of different cancer types. METHODS: The expression profiling of circRNAs in GC is required to identify crucial circRNAs as biomarkers or therapeutic targets. In the present study, a published circRNA microarray dataset was used to identify differentially expressed circRNAs between GC tissues and normal gastric mucosa tissues. Reverse transcription-quantitative PCR was performed to validate the expression of circ_0001789. Fisher's exact test, receiver operating characteristic curve and Kaplan-Meier plots were employed to analyze the clinical significance of circ_0001789. The miRNA targets of circ_0001789 were predicted using an online database, and their functional interaction was further confirmed by RNA pull-down, RNA immunoprecipitation and dual luciferase reporter assays. Transwell assays were conducted to investigate the biological functions of circ_0001789, miR-140-3p and p21 activated kinase 2 (PAK2) in the migration and invasion of GC cells. A xenograft mouse model was established to validate the role of circ_0001789 in the tumorigenesis of GC cells. RESULTS: circ_0001789 was identified as a highly expressed circRNA in GC tissues versus normal gastric mucosa tissues. Silencing circ_0001789 attenuated the malignancy of GC cells, and exosomal circ_0001789 was sufficient to regulate the malignant phenotype of GC cells. miR-140-3p was further identified as a downstream target of circ_0001789, which showed a negative correlation with circ_0001789 expression in GC tissues. Overexpression of miR-140-3p suppressed cell migration, invasion and epithelial-mesenchymal transition in GC cells. PAK2 was identified as the target of miR-140-3 to mediate the malignant phenotype of GC cells. CONCLUSION: The present data suggested that the upregulation of circ_0001789 was associated with the progression of GC and with poor prognosis in patients with GC, and that miR-140-3p/PAK2 served as the downstream axis to mediate the oncogenic effect of circ_0001789.


Assuntos
MicroRNAs , RNA Circular , Neoplasias Gástricas , Quinases Ativadas por p21 , Animais , Humanos , Camundongos , Bioensaio , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Quinases Ativadas por p21/genética , RNA Circular/genética , Neoplasias Gástricas/genética
8.
Chemistry ; 29(5): e202202628, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36250810

RESUMO

Carbonyl-containing derivatives show enduring vitality in the field of thermally activated delayed fluorescence (TADF) materials; they can realize high device efficiency by using both singlet and triplet excitons for electroluminescence. Recently, a system based on fused ketone/amine exhibited huge potential for constructing multi-resonance TADF (MR-TADF) emitters, which exhibit higher narrow-band emission than conventional TADF emitters with twisted donor-acceptor (D-A) structure. Herein, we summarize current research progress in both traditional and MR-type ketone derivatives with TADF characteristics for introducing the molecular design strategy of maintaining high device efficiency while keeping narrow-band emission profile. We hope this review can inspire the emergence of more high-performance narrow-band materials.


Assuntos
Aminas , Citoesqueleto , Fluorescência , Cetonas , Vibração
9.
Macromol Rapid Commun ; 44(15): e2300141, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211666

RESUMO

In order to get stable co-continuous morphology in immiscible polymer blends, besides reducing the interfacial tension, the compatibilizer should not only promote the formation of flat interface between different phases, but also not hinder the coalescence of the dispersed phase. Herein, the relationship between the morphology of the compatibilized polystyrene/nylon 6/styrene-maleic anhydride (PS/PA6/SMA) immiscible polymer blends and the structures of the in-situ formed SMA-g-PA6 graft copolymers as well as the processing conditions are studied. Two kinds of SMA are used: SMA28 (28 wt.% MAH) and SMA11 (11 wt.% MAH). After melt blending with PA6, the in-situ formed copolymer SMA28-g-PA6 has on average of four PA6 side chains, while that of SMA11-g-PA6 has only one. Dissipative particle dynamics simulation results indicate that both SMA28-g-PA6 copolymer and PS/PA6/SMA28 blends tend to form co-continuous structure, while those related to SMA11 intend to form sea-island morphologies. These results are correct only at relatively low rotor speed (60 rpm). When the rotor speed is higher (105 rpm), sea-island morphologies are obtained in SMA28 systems, while that for SMA11 ones are co-continuous. This indicates that higher shear stress can elongate the minor phase domains to form flat interfaces, while the SMA28-g-PA6 copolymers can be pulled out from the interface.


Assuntos
Polímeros , Poliestirenos , Polímeros/química , Poliestirenos/química
10.
Biol Res ; 56(1): 12, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922868

RESUMO

BACKGROUND: Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions. RESULTS: We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments. We found that the number of intron-retention (IR) and alternative 3' splice site (Alt3'SS) events were significantly higher in Z141 and NY-17 under drought stress. We found that the linseed response to the DS treatment was mainly regulated by transcription, while the response to the RD treatment was coregulated by transcription and AS. Whole genome-wide DNA methylation analysis revealed that drought stress caused an increase in the overall methylation level of linseed. Although we did not observe any correlation between differentially methylated genes (DMGs) and differentially spliced genes (DSGs) in this study, we found that the DSGs whose gene body region was hypermethylated in Z141 and hypomethylated in NY-17 were enriched in abiotic stress response Gene Ontology (GO) terms. This finding implies that gene body methylation plays an important role in AS regulation in some specific genes. CONCLUSION: Our study is the first comprehensive genome-wide analysis of the relationship between linseed methylation changes and AS under drought and repeated drought stress. Our study revealed different interaction patterns between differentially expressed genes (DEGs) and DSGs under DS and RD treatments and differences between methylation and AS regulation in drought-tolerant and drought-sensitive linseed varieties. The findings will probably be of interest in the future. Our results provide interesting insights into the association between gene expression, AS, and DNA methylation in linseed under drought stress. Differences in these associations may account for the differences in linseed drought tolerance.


Assuntos
Metilação de DNA , Linho , Linho/genética , Secas , Processamento Alternativo/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
11.
Chaos ; 33(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459222

RESUMO

Chimera states in spatiotemporal dynamical systems have been investigated in physical, chemical, and biological systems, while how the system is steering toward different final destinies upon spatially localized perturbation is still unknown. Through a systematic numerical analysis of the evolution of the spatiotemporal patterns of multi-chimera states, we uncover a critical behavior of the system in transient time toward either chimera or synchronization as the final stable state. We measure the critical values and the transient time of chimeras with different numbers of clusters. Then, based on an adequate verification, we fit and analyze the distribution of the transient time, which obeys power-law variation process with the increase in perturbation strengths. Moreover, the comparison between different clusters exhibits an interesting phenomenon, thus we find that the critical value of odd and even clusters will alternatively converge into a certain value from two sides, respectively, implying that this critical behavior can be modeled and enabling the articulation of a phenomenological model.

12.
Pestic Biochem Physiol ; 194: 105469, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532310

RESUMO

Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.


Assuntos
Hemípteros , Inseticidas , MicroRNAs , Animais , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , MicroRNAs/genética
13.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945266

RESUMO

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Assuntos
Hemípteros , Inseticidas , Animais , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Resistência a Inseticidas/genética , Difosfato de Uridina/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834516

RESUMO

Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.


Assuntos
Sesamum , Sesamum/genética , Multiômica , Melhoramento Vegetal , Genômica/métodos , Proteômica/métodos
15.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674569

RESUMO

Sesame is a promising oilseed crop that produces specific lignans of clinical importance. Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC), and southern (SC) groups, with potential origin in the southern region and subsequent introduction to the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively, and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in higher lignan content sesame accessions, and the "C" allele is favorable for a higher accumulation of lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes. Consequently, the lignans content was significantly increased, and the lignin content was slightly increased. Our findings provide insights into lignans and lignin regulation in sesame and will facilitate molecular breeding of elite varieties and marker-traits association studies.


Assuntos
Lignanas , Sesamum , Sesamum/genética , Sesamum/metabolismo , Estudo de Associação Genômica Ampla , Lignina , Análise de Sequência de DNA , Lignanas/metabolismo , Sementes/metabolismo
16.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003735

RESUMO

The insulin resistance caused by impaired glucose metabolism induces ovarian dysfunction due to the central importance of glucose as a source of energy. However, the research on glucose metabolism in the ovaries is still lacking. The objectives of this study were to analyze the effect of PD-MSCs on glucose metabolism through IGFBP2-AMPK signaling and to investigate the correlation between glucose metabolism and ovarian function. Thioacetamide (TAA) was used to construct a rat injury model. PD-MSCs were transplanted into the tail vein (2 × 106) 8 weeks after the experiment started. The expression of the IGFBP2 gene and glucose metabolism factors (e.g., AMPK, GLUT4) was significantly increased in the PD-MSC group compared to the nontransplantation (NTx) group (* p < 0.05). The levels of follicular development markers and the sex hormones AMH, FSH, and E2 were also higher than those in the TAA group. Using ex vivo cocultivation, the mRNA and protein expression of IGFBP2, AMPK, and GLUT4 were significantly increased in the cocultivation with the PD-MSCs group and the recombinant protein-treated group (* p < 0.05). These findings suggest that the increased IGFBP2 levels by PD-MSCs play an important role in glucose metabolism and ovarian function through the IGFBP2-AMPK signaling pathway.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Tioacetamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Glucose/metabolismo
17.
Yi Chuan ; 45(5): 395-408, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194587

RESUMO

STIM1 (stromal interaction molecule 1) is one of the key components of the store operated Ca2+ entry channel (SOCE), which is located on the endoplasmic reticulum membrane and highly expressed in most kinds of tumors. STIM1 promotes tumorigenesis and metastasis by modulating the formation of invadopodia, promoting angiogenesis, mediating inflammatory response, altering the cytoskeleton and cell dynamics. However, the roles and mechanism of STIM1 in different tumors have not been fully elucidated. In this review, we summarize the latest progress and mechanisms of STIM1 in tumorigenesis and metastasis, thereby providing insights and references for the study on STIM1 in the field of cancer biology in the future.


Assuntos
Cálcio , Carcinogênese , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Carcinogênese/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Neoplasias/genética
18.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593817

RESUMO

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

19.
Angew Chem Int Ed Engl ; 62(22): e202302005, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36965042

RESUMO

Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000 nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990 nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850 nm.

20.
BMC Plant Biol ; 22(1): 256, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606719

RESUMO

BACKGROUND: The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops. RESULTS: In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indicated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted improvement of sesame response to multiple abiotic stresses. CONCLUSION: This study provides a comprehensive understanding of the structure, classification, evolution, and abiotic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses.


Assuntos
Arabidopsis , Sesamum , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA