Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922685

RESUMO

Detecting multiple targets in living cells is important in cell biology. However, multiplexed fluorescence imaging beyond two-to-three targets remains a technical challenge. Herein, we introduce a multiplexed imaging strategy, 'sequential Fluorogenic RNA Imaging-Enabled Sensor' (seqFRIES), which enables live-cell target detection via sequential rounds of imaging-and-stripping. In seqFRIES, multiple orthogonal fluorogenic RNA aptamers are genetically encoded inside cells, and then the corresponding cell membrane permeable dye molecules are added, imaged, and rapidly removed in consecutive detection cycles. As a proof-of-concept, we have identified in this study four fluorogenic RNA aptamer/dye pairs that can be used for highly orthogonal and multiplexed imaging in living bacterial and mammalian cells. After further optimizing the cellular fluorescence activation and deactivation kinetics of these RNA/dye pairs, the whole four-color semi-quantitative seqFRIES process can be completed in ∼20 min. Meanwhile, seqFRIES-mediated simultaneous detection of critical signalling molecules and mRNA targets was also achieved within individual living cells. We expect our validation of this new seqFRIES concept here will facilitate the further development and potential broad usage of these orthogonal fluorogenic RNA/dye pairs for multiplexed and dynamic live-cell imaging and cell biology studies.

2.
Nucleic Acids Res ; 51(16): 8337-8347, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486784

RESUMO

Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid-liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA-protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.


Assuntos
Organelas , RNA , RNA/genética , RNA/metabolismo , Organelas/metabolismo , Proteínas/metabolismo , Fenômenos Biofísicos
3.
Q Rev Biophys ; 55: e5, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570679

RESUMO

Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.


Assuntos
DNA , Nanoestruturas , Biofísica , Membrana Celular , DNA/química , Lipídeos , Nanoestruturas/química
4.
Nano Lett ; 22(18): 7579-7587, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36084301

RESUMO

The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.


Assuntos
Lipídeos de Membrana , Esfingomielinas , Membrana Celular/metabolismo , Colesterol/metabolismo , Misturas Complexas/metabolismo , DNA/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana , Tocoferóis/metabolismo
5.
Angew Chem Int Ed Engl ; 61(6): e202112033, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767659

RESUMO

The cell membrane is a dynamic and heterogeneous structure composed of distinct sub-compartments. Within these compartments, preferential interactions occur among various lipids and proteins. Currently, it is still challenging to image these short-lived membrane complexes, especially in living cells. In this work, we present a DNA-based probe, termed "DNA Zipper", which allows the membrane order and pattern of transient interactions to be imaged in living cells using standard fluorescence microscopes. By fine-tuning the length and binding affinity of DNA duplex, these probes can precisely extend the duration of membrane lipid interactions via dynamic DNA hybridization. The correlation between membrane order and the activation of T-cell receptor signaling has also been studied. These programmable DNA probes function after a brief cell incubation, which can be easily adapted to study lipid interactions and membrane order during different membrane signaling events.


Assuntos
Membrana Celular/química , Sondas de DNA/química , Corantes Fluorescentes/química , Células Madin Darby de Rim Canino/química , Animais , Sondas de DNA/síntese química , Cães , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química
7.
Angew Chem Int Ed Engl ; 60(45): 24070-24074, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34487413

RESUMO

Guanosine tetra- and pentaphosphate, (p)ppGpp, are important alarmone nucleotides that regulate bacterial survival in stressful environment. A direct detection of (p)ppGpp in living cells is critical for our understanding of the mechanism of bacterial stringent response. However, it is still challenging to image cellular (p)ppGpp. Here, we report RNA-based fluorescent sensors for the live-cell imaging of (p)ppGpp. Our sensors are engineered by conjugating a recently identified (p)ppGpp-specific riboswitch with a fluorogenic RNA aptamer, Broccoli. These sensors can be genetically encoded and enable direct monitoring of cellular (p)ppGpp accumulation. Unprecedented information on cell-to-cell variation and cellular dynamics of (p)ppGpp levels is now obtained under different nutritional conditions. These RNA-based sensors can be broadly adapted to study bacterial stringent response.


Assuntos
Escherichia coli/citologia , Imagem Óptica , Corantes Fluorescentes , Guanosina , Guanosina Pentafosfato , RNA , Espectrometria de Fluorescência
8.
Angew Chem Int Ed Engl ; 60(28): 15548-15555, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961329

RESUMO

Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell-cell junctions. In this study, we report a fluorescence lifetime-based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand-receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement-based DNA tension probes to image E-cadherin-mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E-cadherin and N-cadherin tensions during an epithelial-mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.


Assuntos
Caderinas/química , DNA/química , Fluorescência , Corantes Fluorescentes/química , Imagem Óptica , Humanos , Junções Intercelulares , Resistência à Tração
9.
J Am Chem Soc ; 142(6): 2968-2974, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31968164

RESUMO

In situ amplification methods, such as hybridization chain reaction, are valuable tools for mapping the spatial distribution and subcellular location of target analytes. However, the live-cell applications of these methods are still limited due to challenges in the probe delivery, degradation, and cytotoxicity. Herein, we report a novel genetically encoded in situ amplification method to noninvasively image the subcellular location of RNA targets in living cells. In our system, a fluorogenic RNA reporter, Broccoli, was split into two nonfluorescent fragments and conjugated to the end of two RNA hairpin strands. The binding of one target RNA can then trigger a cascaded hybridization between these hairpin pairs and thus activate multiple Broccoli fluorescence signals. We have shown that such an in situ amplified strategy can be used for the sensitive detection and location imaging of various RNA targets in living bacterial and mammalian cells. This new design principle provides an effective and versatile platform for tracking various intracellular analytes.


Assuntos
Hibridização de Ácido Nucleico/métodos , RNA/metabolismo , Frações Subcelulares/metabolismo , Corantes Fluorescentes/química , Limite de Detecção
10.
Methods ; 161: 24-34, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30660865

RESUMO

A fluorogenic aptamer can specifically interact with a fluorophore to activate its fluorescence. These nucleic acid-based fluorogenic modules have been dramatically developed over the past decade, and have been used as versatile reporters in the sensor development and for intracellular imaging. In this review, we summarize the design principles, applications, and challenges of the first-generation fluorogenic RNA-based sensors. Moreover, we discuss some strategies to develop next-generation biosensors with improved sensitivity, selectivity, quantification property, and eukaryotic robustness. Using genetically encoded catalytic hairpin assembly strategy as an example, we further introduce a standard protocol to design, characterize, and apply these fluorogenic RNA-based sensors for in vitro detection and cellular imaging of target biomolecules. By incorporating natural RNA machineries, nucleic acid nanotechnology, and systematic evolution approaches, next-generation fluorogenic RNA-based devices can be potentially engineered to be widely applied in cell biology and biomedicine.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , RNA/química , RNA/genética , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Humanos
11.
Angew Chem Int Ed Engl ; 59(49): 21986-21990, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797667

RESUMO

Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation. The GRAP system can be selectively activated by endogenous stimuli and light of different wavelengths. Compared with their protein analogues, GRAP is highly programmable and exhibits reduced off-target effects. These results indicate that GRAP enables efficient noninvasive target cell ablation with high temporal and spatial precision. This new RNA regulator system will be widely used for optogenetics, targeted cell ablation, subcellular manipulation, and imaging.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Escherichia coli/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Aptâmeros de Nucleotídeos/genética , Escherichia coli/citologia , Células HeLa , Humanos , Imagem Óptica , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
12.
Biomed Eng Online ; 18(1): 73, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185982

RESUMO

BACKGROUND: Patients with end-stage renal disease (ESRD) have failed kidney function, and often must be treated with hemodialysis to extend the patient's life by artificially removing excess fluid and toxins from the blood. However, life-threatening treatment complications can occur because hemodialysis protocols are adjusted infrequently, as opposed to the kidneys which filter blood continuously. Infrequent blood tests, about once per month on average, are used to adjust hemodialysis protocols and as a result, patients can experience electrolyte imbalances, which can contribute to premature patient deaths from treatment complications, such as sudden cardiac death. Since hemodialysis can lead to blood loss, drawing additional blood for tests to assess the patient's kidney function and blood markers is limited. However, sampling multiple drops of blood per session using a microfluidic device has the potential to reduce not only the amount of blood drawn and avoid unnecessary venipuncture, but also reduce costs by limiting medical complications of hemodialysis and provide a more comprehensive assessment of the patient's health status in real time. RESULT: We present preliminary proof-of-concept results of a microfluidic device which uses DNA-based fluorescence nanosensors to measure potassium concentration in a flowing solution. In a matter of minutes, the flowing potassium solution reduced the fluorescence intensity of the nanosensors to a steady-state value. CONCLUSIONS: These proof-of-concept results demonstrate the ability of our DNA-based nanosensors to measure potassium concentration in a microfluidic device. The long-term goal is to integrate this technology with a device to measure potassium and eventually other blood contents multiple times throughout a hemodialysis session, enabling protocol adjustment similar to a healthy kidney.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/metabolismo , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Potássio/análise , Diálise Renal
13.
Angew Chem Int Ed Engl ; 58(50): 18271-18275, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591798

RESUMO

Precisely determining the intracellular concentrations of metabolites and signaling molecules is critical in studying cell biology. Fluorogenic RNA-based sensors have emerged to detect various targets in living cells. However, it is still challenging to apply these genetically encoded sensors to quantify the cellular concentrations and distributions of targets. Herein, using a pair of orthogonal fluorogenic RNA aptamers, DNB and Broccoli, we engineered a modular sensor system to apply the DNB-to-Broccoli fluorescence ratio to quantify the cell-to-cell variations of target concentrations. These ratiometric sensors can be broadly applied for live-cell imaging and quantification of metabolites, signaling molecules, and other synthetic compounds.


Assuntos
Aptâmeros de Nucleotídeos/química , Imagem Molecular/métodos , Adenina/metabolismo , Compostos de Anilina/metabolismo , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , GMP Cíclico/análogos & derivados , GMP Cíclico/análise , Escherichia coli/citologia , Fluorescência , Corantes Fluorescentes/química , Tetraciclina/análise
14.
J Am Chem Soc ; 140(28): 8739-8745, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29944357

RESUMO

DNA and RNA nanotechnology has been used for the development of dynamic molecular devices. In particular, programmable enzyme-free nucleic acid circuits, such as catalytic hairpin assembly, have been demonstrated as useful tools for bioanalysis and to scale up system complexity to an extent beyond current cellular genetic circuits. However, the intracellular functions of most synthetic nucleic acid circuits have been hindered by challenges in the biological delivery and degradation. On the other hand, genetically encoded and transcribed RNA circuits emerge as alternative powerful tools for long-term embedded cellular analysis and regulation. Herein, we reported a genetically encoded RNA-based catalytic hairpin assembly circuit for sensitive RNA imaging inside living cells. The split version of Broccoli, a fluorogenic RNA aptamer, was used as the reporter. One target RNA can catalytically trigger the fluorescence from tens-to-hundreds of Broccoli. As a result, target RNAs can be sensitively detected. We have further engineered our circuit to allow easy programming to image various target RNA sequences. This design principle opens the arena for developing a large variety of genetically encoded RNA circuits for cellular applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Escherichia coli/citologia , Corantes Fluorescentes/química , Imagem Óptica/métodos , RNA/análise , Aptâmeros de Nucleotídeos/genética , Escherichia coli/química , Escherichia coli/genética , Fluorescência , Conformação de Ácido Nucleico , RNA/genética , Espectrometria de Fluorescência/métodos
15.
Proc Natl Acad Sci U S A ; 112(21): E2756-65, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964329

RESUMO

Riboswitches are natural ligand-sensing RNAs typically that are found in the 5' UTRs of mRNA. Numerous classes of riboswitches have been discovered, enabling mRNA to be regulated by diverse and physiologically important cellular metabolites and small molecules. Here we describe Spinach riboswitches, a new class of genetically encoded metabolite sensor derived from naturally occurring riboswitches. Drawing upon the structural switching mechanism of natural riboswitches, we show that Spinach can be swapped for the expression platform of various riboswitches, allowing metabolite binding to induce Spinach fluorescence directly. In the case of the thiamine 5'-pyrophosphate (TPP) riboswitch from the Escherichia coli thiM gene encoding hydroxyethylthiazole kinase, we show that insertion of Spinach results in an RNA sensor that exhibits fluorescence upon binding TPP. This TPP Spinach riboswitch binds TPP with affinity and selectivity similar to that of the endogenous riboswitch and enables the discovery of agonists and antagonists of the TPP riboswitch using simple fluorescence readouts. Furthermore, expression of the TPP Spinach riboswitch in Escherichia coli enables live imaging of dynamic changes in intracellular TPP concentrations in individual cells. Additionally, we show that other riboswitches that use a structural mechanism similar to that of the TPP riboswitch, including the guanine and adenine riboswitches from the Bacillus subtilis xpt gene encoding xanthine phosphoribosyltransferase, and the S-adenosyl-methionine-I riboswitch from the B. subtilis yitJ gene encoding methionine synthase, can be converted into Spinach riboswitches. Thus, Spinach riboswitches constitute a novel class of RNA-based fluorescent metabolite sensors that exploit the diversity of naturally occurring ligand-binding riboswitches.


Assuntos
Riboswitch/genética , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Análise de Célula Única , Espectrometria de Fluorescência , Tiamina Pirofosfato/biossíntese , Tiamina Pirofosfato/metabolismo
16.
J Am Chem Soc ; 139(50): 18182-18185, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29211468

RESUMO

Mechanical forces play critical roles in collective cell behaviors such as cell migration, proliferation, and differentiation. Extensive efforts have been made to measure forces between cells and extracellular matrices. However, force studies at cell-cell junctions remain a challenge. Herein, we reported a novel strategy to construct membrane DNA tension probes to visualize tensile forces at cell junctions. These lipid-modified probes can self-assemble onto cell membranes with high efficiency and stability. Upon experiencing tensile forces generated by neighboring cells, unfolding of the probes leads to a large increase in the fluorescence intensity. Compatible with readily accessible fluorescence microscopes, these easy-to-use membrane DNA tension probes can be broadly used to measure intercellular tensile forces.


Assuntos
Sondas de DNA/química , DNA/química , Sondas Moleculares/química , Células 3T3 , Animais , Fenômenos Mecânicos , Camundongos , Modelos Biológicos
17.
Nano Lett ; 15(10): 6672-6, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26302358

RESUMO

A light-driven artificial molecular nanomachine was constructed based on DNA scaffolding. Pyrene-modified walking strands and disulfide bond-connected stator strands, employed as anchorage sites to support walker movement, were assembled into a 2D DNA tile. Pyrene molecules excited by photoirradiation at 350 nm induced cleavage of disulfide bond-connected stator strands, enabling the DNA walker to migrate from one cleaved stator to the next on the DNA tile. The time-dependent movement of the walker was observed and the entire walking process of the walker was characterized by distribution of the walker-stator duplex at four anchorage sites on the tile under different irradiation times. Importantly, the light-fuelled mechanical movements on DNA tile were first visualized in real time during UV irradiation using high-speed atomic force microscopy (HS-AFM).


Assuntos
DNA/química , Nanoestruturas , Microscopia de Força Atômica , Processos Fotoquímicos
18.
Nano Lett ; 15(1): 457-63, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25479133

RESUMO

The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell membrane, necessitating coordination between intracellular and intranuclear delivery. To accommodate this requirement, we have used DNA self-assembly to develop a nuclear-uptake nanodrug system carried by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via DNA hybridization, small drug-loaded gold nanoparticles (termed nanodrugs) can self-assemble onto the side face of a silver-gold nanorod (NR, termed nanotruck) whose end faces were modified with a cell type-specific internalizing aptamer. By using this size-photocontrollable nanodrug delivery system, anticancer drugs can be efficiently accumulated in the nuclei to effectively kill the cancer cells.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Portadores de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Ouro/química , Humanos , Neoplasias/metabolismo , Prata/química
19.
J Am Chem Soc ; 137(2): 667-74, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25361164

RESUMO

The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Computadores Moleculares , Lógica , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Técnicas Biossensoriais , Linhagem Celular Tumoral , Humanos
20.
J Am Chem Soc ; 136(4): 1256-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24367989

RESUMO

Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.


Assuntos
Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais/análise , DNA de Neoplasias/química , Nanotecnologia , Neoplasias/diagnóstico , Neoplasias/terapia , Humanos , Neoplasias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA