Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116499, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257227

RESUMO

Over-compensatory growth of plants after disturbance is generally preferred by grassland users and managers because of more forage. How the grassland productivity and the plant growth condition before disturbance affect the compensatory growth are important for grazing management and the understanding of grassland degradation, yet they are not well understood. A clipping experiment was conducted on the Qinghai-Tibetan Plateau to understand the compensatory growth and conditions for the occurrence of over-compensatory at alpine meadows with different degradation status. Results showed the competition for light constrains the plant growth post-clipping at non-degraded and slightly degraded alpine meadows, while the reduction of soil nitrogen limits it at heavily degraded alpine meadow. The biomass accumulated post-clipping was positively correlated with the growing season biomass in unclipped plots and the biomass at clipping in clipped plots. When the aboveground biomass at clipping was less than 40.10 g m-2 and the growing season biomass was between 38 and 97 g m-2, the over-compensatory growth of alpine meadow could occur. Higher clipping rate is required for the alpine meadow with high productivity but the maximum clipping rate should be less than 0.71 to induce the over-compensatory growth. Equal-compensatory occurred at non-degraded and slightly degraded, while over-compensatory growth was observed at moderately degraded and a marginally significant over-compensatory growth at heavily degraded alpine meadow. The over-compensatory growth occurred at moderately degraded alpine meadow is mainly due to the performance of forbs. Our results suggest that grazing at moderately degraded alpine meadow may induce the over-compensatory growth at the community level, but the over-compensatory growth of forbs at moderately degraded alpine meadow may aggravate the alpine meadow degradation.


Assuntos
Pradaria , Solo , Tibet , Biomassa , Nitrogênio/análise , Plantas/metabolismo
2.
Glob Chang Biol ; 27(24): 6578-6591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606141

RESUMO

Phosphorus (P) is essential for productivity of alpine grassland ecosystems, which are sensitive to global warming. We tested the hypotheses that (1) mobilized 'calcium-bound inorganic P' (Ca-Pi ) is a major source of plant-available P in alpine meadows with alkaline soils after long-term warming, (2) mobilization of Ca-Pi is linked to effective plant carboxylate-releasing P-acquisition strategies under warming, and (3) the mobilization is also related to plant nitrogen (N)-acquisition. We conducted an 8-year warming experiment in an alpine meadow (4635 m above sea level) on the Qinghai-Tibetan Plateau. A significant increase in P concentration in both aboveground and belowground biomass indicates an increased mobilization and assimilation of P by plants under warming. We observed a significant decrease in Ca-Pi , no change in moderately-labile organic P, and an increase in highly resistant organic P after warming. There was no increase in phosphatase activities. Our results indicate that Ca-Pi , rather than organic P was the major source of plant-available P for alpine meadows under warming. Higher leaf manganese concentrations of sedges and forbs after warming indicate that carboxylates released by these plants are a key mechanism of Ca-Pi mobilization. The insignificant increase in Rhizobiales after warming and the very small cover of legumes show a minor role of N-acquisition strategies in solubilizing phosphate. The insignificant change in relative abundance of mycorrhizal fungi and bacteria related to P cycling after warming shows a small contribution of microorganisms to Ca-Pi mobilization. The significant increase in leaf N and P concentrations and N:P ratio of grasses and no change in sedge leaf N:P ratio reflect distinct responses of plant nutrient status to warming due to differences in P-acquisition strategies. We highlight the important effects of belowground P-acquisition strategies, especially plant carboxylate-releasing P-acquisition strategies on responses of plants to global changes in alpine meadows.


Assuntos
Fósforo , Solo , Ecossistema , Pradaria , Fosfatos , Tibet
3.
Front Plant Sci ; 13: 794084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310678

RESUMO

The shelterbelt forest between oases and the desert plays a vital role in preventing aeolian disasters and desertification in arid regions of northwest China. Tamarix ramosissima (T. ramosissima), a typical perennial and native xerophyte shrub in Northwest China, grows naturally and is widely used in building artificial shelterbelt forests. The balance between water consumption and the availability of water determines the survival and growth of T. ramosissima. How T. ramosissima copes with extremely low rainfall and a deep groundwater table remains unknown. To answer this, the transpiration and the water sources of T. ramosissima were investigated by the heat balance and oxygen isotopic analysis method, respectively. Our results show that the daily T. ramosissima stem sap flow (SSF) was positively correlated with air temperature (Ta), photosynthetically active radiation (PAR), and the vapor pressure deficit (VPD). We found no significant relationship between the daily SSF and soil moisture in shallow (0-40 cm) and middle (40-160 cm) soil layers. Oxygen isotope results showed that T. ramosissima mainly sources (>90%) water from deep soil moisture (160-400 cm) and groundwater (910 cm). Diurnally, T. ramosissima SSF showed a hysteresis response to variations in PAR, Ta, and VPD, which suggests that transpiration suffers increasingly from water stress with increasing PAR, Ta, and VPD. Our results indicate that PAR, Ta, and VPD are the dominant factors that control T. ramosissima SSF, not precipitation and shallow soil moisture. Deep soil water and groundwater are the primary sources for T. ramosissima in this extremely water-limited environment. These results provide information that is essential for proper water resource management during vegetation restoration and ecological reafforestation in water-limited regions.

4.
Front Plant Sci ; 12: 704138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539698

RESUMO

Ecosystem stability characterizes ecosystem responses to natural and anthropogenic disturbance and affects the feedback between ecosystem and climate. A 9-year warming experiment (2010-2018) was conducted to examine how climatic warming and its interaction with the soil moisture condition impact the temporal stability of plant community aboveground biomass (AGB) of an alpine meadow in the central Qinghai-Tibetan Plateau (QTP). Under a warming environment, the AGB percentage of grasses and forbs significantly increased but that of sedges decreased regardless of the soil water availability in the experimental plots. The warming effects on plant AGB varied with annual precipitation. In the dry condition, the AGB showed no significant change under warming in the normal and relatively wet years, but it significantly decreased in relatively drought years (16% in 2013 and 12% in 2015). In the wet condition, the AGB showed no significant change under warming in the normal and relatively drought years, while it significantly increased in relatively wet years (12% in 2018). Warming significantly decreased the temporal stability of AGB of plant community and sedges. Species richness remained stable even under the warming treatment in both the dry and wet conditions. The temporal stability of AGB of sedges (dominant plant functional group) explained 66.69% variance of the temporal stability of plant community AGB. Our findings highlight that the temporal stability of plant community AGB is largely regulated by the dominant plant functional group of alpine meadow that has a relatively low species diversity.

5.
Front Plant Sci ; 9: 1790, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619386

RESUMO

The plant productivity of alpine meadow is predicted to generally increase under a warming climate, but it remains unclear whether the positive response rates will vary with soil water availability. Without consideration of the response of community composition and plant quality, livestock grazing under the current stocking rate might still lead to grassland degradation, even in meadows with high plant biomass. We have conducted a warming experiment from 2010 to 2017 to examine the interactive effects of warming and soil water availability on plant growth and forage quality at individual and functional group levels in an alpine meadow located in the permafrost region of the Qinghai-Tibetan Plateau. Warming-induced changes in community composition, biomass, and forage quality varied with soil water availability. Under dry conditions, experimental warming reduced the relative importance of grasses and the aboveground biomass by 32.37 g m-2 but increased the importance value of forbs. It also increased the crude fat by 0.68% and the crude protein by 3.19% at the end of summer but decreased the acid detergent fiber by 5.59% at the end of spring. The increase in crude fat and protein and the decrease in acid detergent fiber, but the decrease in aboveground biomass and increase the importance value of forbs, which may imply a deterioration of the grassland. Under wet conditions, warming increased aboveground biomass by 29.49 g m-2 at the end of spring and reduced acid detergent fiber by 8.09% at the end of summer. The importance value of grasses and forbs positively correlated with the acid detergent fiber and crude protein, respectively. Our results suggest that precipitation changes will determine whether climate warming will benefit rangelands on the Qinghai-Tibetan Plateau, with drier conditions suppressing grassland productivity, but wetter conditions increasing production while preserving forage quality.

6.
Ecol Evol ; 6(23): 8546-8555, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28031806

RESUMO

Nitrogen (N) availability is projected to increase in a warming climate. But whether the more available N is immobilized by microbes (thus stimulates soil carbon (C) decomposition), or is absorbed by plants (thus intensifies C uptake) remains unknown in the alpine meadow ecosystem. Infrared heaters were used to simulate climate warming with a paired experimental design. Soil ammonification, nitrification, and net mineralization were obtained by in situ incubation in a permafrost region of the Qinghai-Tibet Plateau (QTP). Available N significantly increased due to the stimulation of net nitrification and mineralization in 0-30 cm soil layer. Microbes immobilized N in the end of growing season in both warming and control plots. The magnitude of immobilized N was lower in the warming plots. The root N concentration significantly reduced, but root N pool intensified due to the significant increase in root biomass in the warming treatment. Our results suggest that a warming-induced increase in biomass is the major N sink and will continue to stimulate plant growth until plant N saturation, which could sustain the positive warming effect on ecosystem productivity.

7.
Ecol Evol ; 5(18): 4063-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26445659

RESUMO

Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai-Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0-100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40-100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 (+)-N, NO 3 (-)-N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30-50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30-50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.

8.
PLoS One ; 9(10): e109319, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25291187

RESUMO

Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m(-2) s(-1)) was higher than in ER (0.80 µ mol m(-2) s(-1)), resulting in an increase in NEE (0.70 µ mol m(-2) s(-1)). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m(-2) in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/química , Pradaria , Modelos Estatísticos , Solo/química , Animais , Biomassa , Mudança Climática , Herbivoria/fisiologia , Humanos , Hidrologia , Plantas/química , Plantas/metabolismo , Estações do Ano , Temperatura , Tibet , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA