Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38488084

RESUMO

In our study, we investigated the influence of the local structure of amorphous Li-La-Zr-O (a-LLZO) on Li-ion conductivity using ab initio molecular dynamics (AIMD). A-LLZO has shown promising properties in inhibiting the growth of lithium dendrites, making it a potential candidate for solid electrolytes in all-solid-state lithium batteries. The low Li-ion conductivity of a-LLZO is currently limiting its practical applications. Our findings revealed that the homogeneous distribution of Zr-O polyhedra within the pristine structure of a-LLZO contributes to enhanced Li-ion conductivity. By reducing the interconnections among Zr-O polyhedra, the AIMD-simulated a-LLZO sample achieved a Li-ion conductivity of 5.78 × 10-4 S/cm at room temperature, which is slightly lower than that of cubic LLZO (c-LLZO) with a Li-ion conductivity of 1.63 × 10-3 S/cm. Furthermore, we discovered that Li-ion conductivity can be influenced by adjusting the elemental ratios within a-LLZO. This suggests that fine-tuning the composition of a-LLZO can potentially further enhance its Li-ion conductivity and optimize its performance as a solid electrolyte in lithium batteries.

2.
BMC Cardiovasc Disord ; 22(1): 336, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902792

RESUMO

BACKGROUND AND OBJECTIVE: Bioprostheses are the most common prostheses used for valve replacement in the Western medicine. The major flaw of bioprostheses is the occurrence of structural valve deterioration (SVD). This study aimed to assess the pathological features of porcine aortic valve (PAV)-SVD based on histomorphological and immunopathological characteristics of a large cohort of patients. METHODS: Histopathological data of 109 cases with resected PAV were collected. The type and amount of infiltrated cells were evaluated in the different types of bioprosthetic SVD by immunohistochemical staining. RESULTS: The most common cause of SVD was calcification, leaflet tear, and dehiscence (23.9%, 19.3%, and 18.3%, respectively). Immunohistochemical staining demonstrated that macrophages were infiltrated in the calcified, lacerated and dehiscence PAV, in which both M1 and M2 macrophages were existed in the calcified PAV. Importantly, the higher content of M1 macrophages and less content of M2 macrophages were found in the lacerated and dehiscence PAV, and MMP-1 expression was mainly found in the lacerated PAV. The endothelialization rate of leaflet dehiscence was higher than that of calcified and lacerated leaflets. A large number of CD31+/CD11b+ cells was aggregated in the spongy layer in the lacerated and dehiscence PAV. CONCLUSION: Cell regeneration and infiltration is a double edged sword for the PAV deterioration. Macrophage infiltration is involved in the different types of SVD, while only MMP-1 expression is involved in lacerated leaflets. The macrophage subtype of circulating angiogenic cells in dehiscence and tear PAV could be identified, which could reserve macrophages in the PAV-SVD.


Assuntos
Bioprótese , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Animais , Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Metaloproteinase 1 da Matriz , Desenho de Prótese , Falha de Prótese , Regeneração , Suínos
3.
ACS Nano ; 18(4): 2917-2927, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221729

RESUMO

A commonly used strategy to tackle the unstable interfacial problem between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) is to introduce an interlayer. However, this strategy has a limited effect on stabilizing LATP during long-term cycling or under high current density, which is due in part to the negative impact of its internal defects (e.g., gaps between grains (GBs)) that are usually neglected. Here, control experiments and theoretical calculations show clearly that the GBs of LATP have higher electronic conductivity, which significantly accelerates its side reactions with Li. Thus, a simple LiCl solution immersion method is demonstrated to modify the GBs and their electronic states, thereby stabilizing LATP. In addition to LiCl filling, composite solid polymer electrolyte (CSPE) interlayering is concurrently introduced at the Li/LATP interface to realize the internal-external dual modifications for LATP. As a result, electron leakage in LATP can be strictly inhibited from its interior (by LiCl) and exterior (by CSPE), and such dual modifications can well protect the Li/LATP interface from side reactions and Li dendrite penetration. Notably, thus-modified Li symmetrical cells can achieve ultrastable cycling for more than 3500 h at 0.4 mA cm-2 and 1500 h at 0.6 mA cm-2, among the best cycling performance to date.

4.
Mol Omics ; 17(1): 130-141, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33295914

RESUMO

The DNase I hypersensitivity site is an important marker of the DNA regulatory region, and its identification in the DNA sequence is of great significance for biomedical research. However, traditional identification methods are extremely time-consuming and can not obtain an accurate result. In this paper, we proposed a predictor called iDHS-DASTS to identify the DHS based on benchmark datasets. First, we adopt a feature extraction method called PseDNC which can incorporate the original DNA properties and spatial information of the DNA sequence. Then we use a method called LASSO to reduce the dimensions of the original data. Finally, we utilize stacking learning as a classifier, which includes Adaboost, random forest, gradient boosting, extra trees and SVM. Before we train the classifier, we use SMOTE-Tomek to overcome the imbalance of the datasets. In the experiment, our iDHS-DASTS achieves remarkable performance on three benchmark datasets. We achieve state-of-the-art results with over 92.06%, 91.06% and 90.72% accuracy for datasets [Doublestruck S]1, [Doublestruck S]2 and [Doublestruck S]3, respectively. To verify the validation and transferability of our model, we establish another independent dataset [Doublestruck S]4, for which the accuracy can reach 90.31%. Furthermore, we used the proposed model to construct a user friendly web server called iDHS-DASTS, which is available at http://www.xdu-duan.cn/.


Assuntos
DNA/genética , Desoxirribonuclease I/genética , Sequências Reguladoras de Ácido Nucleico/genética , Software , Algoritmos , Humanos , Internet , Análise de Sequência de DNA , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA